
Stochastic Calculus Assignment 1

Liam Carroll - 830916

Due Date: 16th May 2021

1. Question 6 - Simulating e from a martingale (W1)

Let {Xn : n ≥ 1} be an i.i.d sequence of uniform random variables over [0, 1] with density
pXn(x) = 1(0 ≤ x ≤ 1). We can define Sn , X1 + · · · + Xn with S0 , 0, and further
define the stopping time τ , inf{n : Sn > 1}.

Part a)

Let f : [0, 2]→ R be a function such that

f(x) =

∫ 1

0
f(x+ t)dt+ 1 ∀x ∈ [0, 1] . (1.1)

We may define a stochastic process, valid for Sn ≤ 1, as

Mn , f(Sn) + n for n ≥ 0 . (1.2)

We will show that Mn is a martingale with respect to the natural filtration on Sm, that is
E[Mn+1|Fn] = Mn (which was shown to be equivalent to the condition E[Mm|Fn] = Mn

for m > n in tutorials) where Fn = σ(S1, . . . , Sn). We first note that Mn is clearly
Fn-adapted, and measurability follows easily from the compact support and bounded
derivatives on f(x) + n. For the martingale property, we calculate

E[Mn+1|Fn] = E[f(Sn +Xn+1) + n+ 1|Sn = z] = n+ 1 + E[f(z +Xn+1)]

= n+ 1 +

∫ ∞
−∞

f(z + u)pXn(u)du = n+ 1 +

∫ 1

0
f(z + u)du

= n+ 1 + f(z)− 1 = f(Sn) + n = Mn , (1.3)

thus showing that Mn is a martingale. It is clear that τ is an Fn stopping time, and so
by Proposition 1.1 we know that τ ∧ n is also an Fn stopping time, which thus allows us
to apply the optional sampling theorem to conclude that Mτ∧n is also a martingale with
respect to Fn.

Part b)

We can use the above result to prove E[τ ] = e. In particular, since Mτ∧n is a martingale
we have that

E[Mτ∧n|F0] = E[f(Sτ∧n) + τ ∧ n] = M0 = f(S0) , (1.4)

where the second equality is because conditioning on the trivial sigma algebra does not
provide any information, and the third equality is due to the martingale property.
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We first find an explicit form of f(x) satisfying our above requirements. We note that f
is defined on [0, 2], but only needs to satisfy the integral equation on [0, 1], therefore we
may start by defining f |(1,2] ≡ 0. We may then perform a substitution on the integral to
get ∫ 1

0
f(x+ t)1(x+ t ≤ 1)dt =

∫ x+1

x
f(u)1(u ≤ 1)du =

∫ 1

x
f(u)du ,

and then by the fundamental theorem of calculus we have

f ′(x) =
d

dx

(
−
∫ x

1
f(u)du

)
= −f(x) .

We also note that

f(1) =

∫ 2

1
f(u)1(u ≤ 1)du+ 1 = 1 ,

and so solving the above differential equation with initial condition yields

f(x) = Ce−x1(0 ≤ x ≤ 1) = e1−x
1(0 ≤ x ≤ 1) . (1.5)

To get the desired result, we then want to take limn→∞ τ∧n = τ . To bring this limit inside
the expectation we need to apply the dominated convergence theorem, which is valid since
we have f(Sτ∧n) + τ ∧ n n→∞→ f(Sτ ) + τ in the case where τ is finite which happens with
probability 1. Further, it is uniformly bounded since |f(Sτ∧n) + τ ∧ n| ≤ |e+ τ | and τ is
a stopping time that is finite with probability 1. Therefore by the dominated convergence
theorem we have

lim
n→∞

E[f(Sτ∧n) + τ ∧ n] = E[ lim
n→∞

f(Sτ∧n) + τ ∧ n] = E[f(Sτ ) + τ ] = E[τ ] (1.6)

where the last equality holds since by definition Sτ > 1, but then we have f(Sτ ) = 0. Our
calculation in (1.4) then tells us that

E[τ ] = f(S0) = f(0) = e (1.7)

and so we are done. Note that this is clearly a very convenient (even if potentially slow
way) of simulating the number e using only a uniform random number generator.
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2. Question 11 - Non-differentiability of Brownian Motion (W1)

Let B be a one-dimensional Brownian motion.

Part a)

Define the random variable

Xt ,

tB 1
t
, if t > 0

0 t = 0
. (2.1)

We want to show that X = {Xt : t ≥ 0} is also Brownian motion, that is, that B satisfies
the time inversion property. By definition we have P(X0 = 0) = 1. For all t 6= 0, continuity
of paths is immediate since t, 1

t and Bt are all continuous functions of t, therefore Xt is just
a composite of continuous functions and is thus continuous. For the case t = 0, we need
to show limt→0Xt = limt→0 tB1/t = 0 almost surely. But this the same as limt→∞

Bt
t = 0

(i.e. the law of large numbers for Brownian motion), which we proved in Problem Sheet
4 Q4, thus showing that Xt is continuous almost surely for all t ≥ 0.

We may then appeal to Proposition 2.2 that states that X is a Brownian motion if and
only if it satisfies the properties above, and additionally it is a Gaussian process (i.e.
(Xt1 , Xt2 , . . . , Xtn) is jointly Gaussian for any n and partition t1 < · · · < tn) and has
mean E[Xt] = 0 and covariance E[XtXs] = s for any 0 ≤ s ≤ t. It is clear that distribu-
tionally we have tB1/t ∼ tN (0, 1/t) ∼ N (0, t) so E[Xt] = 0.

From the independent incremenet property of Brownian motion, for any 0 ≤ s ≤ t we
have

E[BsBt] = E[Bs(Bt −Bs +Bs)] = E[Bs(Bt −Bs)] + E[B2
s ] = s . (2.2)

Therefore we calculate for any 0 ≤ s ≤ t, where 1
t ≤

1
s

E[XsXt] = E[stB1/sB1/t] = stE[B1/sB1/t] = st
1

t
= s , (2.3)

so Xt satisfies the covariance property. We further recall that B itself is a Gaussian process,
so any random vector (Xt1 , . . . , Xtn)T = A(B1/t1 , . . . , B1/tn)T where A = diag(t1, . . . tn) is
a deterministic (constant) matrix, is also a Gaussian process since a linear transformation
of a Gaussian random vector is a Gaussian random vector. Therefore Xt is a Brownian
motion.

Part b)

We want to show that with probability one there exist two sequences of positive times
tn ↓ 0 and sn ↓ 0 such that Bsn < 0 and Btn > 0 for all n. Recalling that we define τx to
be the first time the Brownian motion hits the level x. So for any n ≥ 1 we may define
the sequences

tn := τ1/n = inf{t ≥ 0 : Bt =
1

n
} , sn := τ−1/n = inf{t ≥ 0 : Bt = − 1

n
} . (2.4)

By the symmetry of B we know that −B is also a Brownian motion, thus it only suffices to
only consider tn and all results will similarly apply to sn. From Lemma 2.3 on the almost
surely unboundedness of B, using the continuity in time we know that τx is finite almost
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surely, thus tn is finite almost surely for each n. We also know that tn is a monotonically
decreasing sequence because for any given path Bt, since 1

n+1 <
1
n , using the continuity

in t we may apply the intermediate value theorem to see that Bt must hit 1
n+1 before it

hits 1
n , thus tn > tn+1 for all n. Finally, to see that tn → 0 almost surely we may use the

result from lectures that explicitly calculates the density of τx as

fτx(t)dt =
x√
2πt3

e−
x2

2t dt . (2.5)

Since tn > 0 (so |tn − 0| = tn) we first want to show that for any ε > 0 we have
limn→∞ P(tn < ε) = 1. Using the substitution u = t−1/2 and then the series expansion of
the error function erf(x) to make the limit easier to see, we calculate

P(tn < ε) =

∫ ε

0

1

n
√

2πt3
e−

1
2n2tdt = 1− erf

(
1

n
√

2ε

)
= 1− 2√

π

∞∑
k=0

(−1)k

k!(2k + 1)

(
1

n

)2k+1( 1√
2ε

)2k+1

, (2.6)

and so for any fixed ε we may take the limit n → ∞ of the series to see that every term
goes to 0. Therefore we have limn→∞ P(tn < ε) = 1. But then since tn is a monotonically
decreasing sequence we must have almost sure convergence, so tn ↓ 0 almost surely.

Part c)

We want to show that with probability one t 7→ Bt is non-differentiable at t = 0. Firstly,
from Lemma 2.3 we know that almost surely

sup
m≥0

Bm = +∞ , and inf
m≥0

Bm = −∞ . (2.7)

So we may define a sequence an = supm≥nBm, but then by the strong Markov property
we have that

a1 = sup
m≥1

Bm = sup
m≥1

(Bm −B1 +B1) = sup
m≥1

(Bm −B1) +B1 = sup
m′≥0

(Bm′) +B1 = +∞ .

(2.8)

Continuing this inductively we see that an = +∞ for all n, therefore we conclude that
almost surely we have

lim sup
t→∞

Bt = lim
n→∞

an = +∞ , and similarly lim inf
t→∞

Bt = −∞ . (2.9)

Now we turn to differentiability at t = 0. Let tn ↓ 0 and sn ↓ 0 be defined as above. Then,
using the fact that X is also a Brownian motion from part a), we have (where ∗ refers to
the upper derivative)

B′(0)∗ = lim sup
tn→0

B(tn)

tn
= lim sup

tn→0
X

(
1

tn

)
= lim sup

t→∞
X(t) = +∞ , (2.10)

but by definition we also have

lim sup
tn→0

B(tn)

tn
= lim sup

tn→0

1

ntn
. (2.11)
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Similarly, since sn is also a sequence of positive times that decrease to 0, we can calculate
(where ∗ refers to the lower derivative)

B′(0)∗ = lim inf
sn→0

B(sn)

sn
= lim inf

sn→0

(
− 1

nsn

)
= − lim sup

sn→0

1

nsn
= − lim sup

tn→0

1

ntn
= −∞ .

(2.12)

In the second last equality we have used the fact that −B is also a Brownian motion
(so B ∼ −B), so we see that by the symmetry of their definitions we have equiv-
alence in distribution, that is, tn ∼ sn. This says that almost surely we must have
lim supsn→0

1
nsn

= lim suptn→0
1
ntn

(in other words, the rate of convergence is not going
to be meaningfully different, so their limit will be the same). Thus we have showed that
B′(0)∗ = +∞ 6= −∞ = B′(0)∗ and so B is not differentiable at t = 0 since the upper and
lower limits do not agree.

Now fix some t0 > 0. We know that the process Y (t) = B(t + t0) − B(t0) is also a
Brownian motion, which we showed was not differentiable at t = 0, which is equivalent to
B not being differentiable at t0 and so we are done.

Part d)

Let s < t < u, we want to calculate E[Bt|σ(Bs), σ(Bu)]. To begin, we are clearly interested
in splitting our interval into more meaningful components, so we can decompose our
situation into a Gaussian random variable Zt (which is Gaussian since B is a Gaussian
process) such that

(u− s)Zt = u(Bt −Bs) + s(Bu −Bt)− t(Bu −Bs) ,

which after rearrangement becomes

Zt = Bt −
u− t
u− s

Bs −
t− s
u− s

Bu . (2.13)

It is clear that Zt is Gaussian since it is just a sum of normally distributed random
variables, and further we have

E[Zt] = E
[
Bt −

u− t
u− s

Bs −
t− s
u− s

Bu

]
= E[Bt]−

u− t
u− s

E[Bs]−
t− s
u− s

E[Bu] = 0 . (2.14)

More importantly, Zt is independent of Bs and Bu since, recalling that it is jointly normal
as it is a Gaussian process and the independent increments of Brownian motion, we have

cov(Zt, Bs) = E[ZtBs] = E

[(
u

u− s
(Bt −Bs) +

s

u− s
(Bu −Bt)−

t

u− s
(Bu −Bs)

)
Bs

]
=

u

u− s
E[(Bt −Bs)Bs] +

s

u− s
E[(Bu −Bt)Bs]−

t

u− s
E[(Bu −Bs)Bs] = 0 .

An identical calculation can be performed for Bu, again using the independent increments
of Brownian motion and splitting up the interval accordingly. Rearranging our expression
in (2.13), we see that

E[Bt|σ(Bs), σ(Bu)] = E[Zt|σ(Bs), σ(Bu)] + E
[
u− t
u− s

Bs|σ(Bs), σ(Bu)

]
+ E

[
t− s
u− s

Bu|σ(Bs), σ(Bu)

]
= E[Zt] +

u− t
u− s

Bs +
t− s
u− s

Bu =
u− t
u− s

Bs +
t− s
u− s

(Bu −Bs +Bs)

= Bs +
t− s
u− s

(Bu −Bs) (2.15)

and so we are done.
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3. Question 23 - Brownian motion and the Laplacian (a love story)
(W2.5)

Let Bx be a d-dimensional Brownian motion starting at x.

Part a)

Let f be an arbitrary smooth function with compact support Xd ⊂ Rd. We may define
the process

Mt , f(Bx
t )− f(x)− 1

2

∫ t

0
(∆f)(Bx

r )dr , (3.1)

where ∆ = ∆x :=
∑d

i=1
∂2

∂x2i
is the Laplacian operator on spatial coordinates. We will

show Mt is a martingale with respect to the natural filtration on Bx, that is Ft = σ({Bx
s :

0 ≤ s ≤ t}) for any t ≥ 0. Ft-adaptedness is clear, and we will assume that measura-
bility is given too since f is smooth on a compact domain. So our main goal is to show
E[Mt −Ms|Fs] = 0 for any 0 ≤ s < t. Note that f(x) is a time independent function,
which will make our life a bit easier.

We first note that the density of Bx
t (where x = (x1, . . . , xd) is the fixed starting point

and u = (u1, . . . , ud) is the differential variable) is given by

p(u; t, x) :=
1

(2πt)d/2
exp(−‖u− x‖2/2t) . (3.2)

By direct calculation we see that (where dt is the dimension d multiplied by time t, not
the differential element dt)

∂p

∂t
=

(
‖u− x‖2 − dt

2t2

)
p(u; t, x) ,

and then

∂p

∂ui
=

∂p

∂ui

1

(2πt)d/2
e−

(ui−xi)
2

2t

∏
j 6=i

e−
(uj−xj)

2

2t = −ui − xi
t

p(u; t, x) ,

which leads to

∂2p

∂u2
i

=
(ui − xi)2 − t

t2
p(u; t, x) , so ∆p =

‖u− x‖2 − dt
t2

p(u; t, x) ,

which leads us to conclude the identity

∂p

∂t
=

1

2
∆p for all x ∈ Rd, t > 0 . (3.3)

We now turn to the martingale property. Letting t = s + h for some h > 0 in the above
martingale property, we have

Ms+h −Ms = f(Bx
s+h)− f(x)− 1

2

∫ s+h

0
(∆f)(Bx

r )dr −
(
f(Bx

s )− f(x)− 1

2

∫ s

0
(∆f)(Bx

r )dr

)
= f(Bx

s+h)− f(Bx
s )− 1

2

∫ s+h

s
(∆f)(Bx

r )dr . (3.4)
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Our sigma algebra Fs gives us all information (i.e. the trajectory) of Bx
r up to time s, so

in particular we know that Bx
s = z for some z ∈ Rd. Taking expectations, where we can

bring the expectation inside the integral thanks to Fubini’s theorem, we have

E[Ms+h −Ms|Fs] = E[f(Bx
s+h)|Fs]− E[f(Bx

s )|Fs]− E

[∫ s+h

s

1

2
(∆f)(Bx

r )dr

∣∣∣∣∣ Fs
]

= E[f(Bx
s+h)|Fs]− f(z)−

∫ s+h

s
E
[

1

2
(∆f)(Bx

r )
∣∣ Fs]dr .

Thus, using the independent increment, Bx
s+h − Bx

s ∼ B0
h and B0

s + z ∼ Bz
s properties of

Brownian motion we have

E[f(Bx
s+h)|Fs] = E[f

(
(Bx

s+h −Bx
s ) +Bx

s

)
|Bx

s = z]

= E[f(Bx
s+h −Bx

s + z)] = E[f(B0
h + z)]

= E[f(Bz
h)] =

∫
Xd

f(u)p(u;h, z)du . (3.5)

We may then calculate, where “|Fs” is notational shorthand to keep in mind that we may
use the information provided by Fs when our calculation requires us to,

E
[

1

2
(∆f)(Bx

r )
∣∣ Fs] =

∫
Xd

1

2
(∆f)(u)p(u; r, x)du | Fs

=

d∑
i=1

∫
Xd

1

2

∂2f

∂u2
i

(u)p(u; r, x)du | Fs . (3.6)

Using integration by parts we see that we have∫
Xd

(
∂2f

∂u2
i

)
(u)p(u; r, x)du =

[
∂f

∂ui
(u)p(u; r, x)

]
∂Xd

−
∫
Xd

(
∂f

∂ui

)
(u)

∂p

∂ui
(u)du

=

[
∂f

∂ui
(u)p(u; r, x)− f(u)

∂p

∂ui
(u; r, x)

]
∂Xd

+

∫
Xd

f(u)

(
∂2p

∂u2
i

)
(u; r, x)du . (3.7)

We will then make the simplifying assumption that f is such that the term

d∑
i=1

[
∂f

∂ui
(u)p(u; r, x)− f(u)

∂p

∂ui
(u; r, x)

]
∂Xd

= 0 , (3.8)

which is reasonable to assume since f is compactly supported. Thus, applying (3.7) and
(3.3) we have∫

Xd

1

2
(∆f)(u)p(u; r, x)du | Fs =

∫
Xd

f(u)
1

2
(∆p)(u; r, x)du | Fs

=

∫
Xd

f(u)
∂p

∂t
(u; r, x)du | Fs .

7



It then follows from Fubini’s theorem and our calculation in (3.5) that we have∫ s+h

s
E
[

1

2
(∆f)(Bx

r )
∣∣ Fs]dr =

∫ s+h

s
E
[

1

2
(∆f)(Bz

r−s)

]
dr

= lim
ε→0

∫ s+h

s+ε

∫
Xd

1

2
(∆f)(u)p(u; r − s, z)dudr

= lim
ε→0

∫
Xd

f(u)

[∫ s+h

s+ε

∂p

∂t
(u; r − s, z)dr

]
du

= lim
ε→0

∫
Xd

f(u)
(
p(u;h, z)− p(u; ε, x)

)
du

= E[f(Bz
h)]−

∫
Xd

lim
ε→0

p(u; ε, z)f(u)du

= E[f(Bz
h)]− f(z) .

Note that we introduced the ε limit to ensure that p(u; r−s, z) was defined for all t ≥ r−s
(clearly r = s is problematic). The last equality follows from identifying

lim
ε→0

p(u; ε, z) = δ(u− z) (3.9)

where δ(u) is the Dirac delta function. Thus we finally calculate

E[Ms+h −Ms|Fs] = E[f(Bz
h)]− f(z)−

(
E[f(Bz

h)]− f(z)
)

= 0 , (3.10)

and so Ms is a martingale, thus concluding the proof.

Part b)

Let f(x) = log ‖x‖d = 1
2 log ‖x‖2d for d = 2 and g(x) = ‖x‖2−d for d ≥ 3. We will show

that these are harmonic functions on Rd respectively, that is ∆f = 0 = ∆g. We compute

∂f

∂x1
=

1

2

∂

∂x1
log(x2

1 + x2
2) =

x1

x2
1 + x2

2

, so
∂2f

∂x2
1

=
x2

2 − x2
1

(x2
1 + x2

2)2
= −∂

2f

∂x2
2

(3.11)

where the last equality follows by the symmetry of the form of ∂2

∂x21
f , and so rearranging

we have ∆f = 0. For g we may rewrite g(x) = ‖x‖−k for some k ≥ 1, so we have

∂g

∂xi
=

∂

∂xi

k+2∑
j=1

x2
j

−k/2 = −kxi

k+2∑
j=1

x2
j

−(k/2+1)

so
∂2g

∂x2
i

=

k+2∑
j=1

x2
j

−(k/2+2)k(k + 2)x2
i − k

k+2∑
j=1

x2
j


which follows from an unenlightening and lengthy application of the quotient rule. Thus
we have

∆g =

k+2∑
i=1

∂2g

∂x2
i

=

k+2∑
j=1

x2
j

−(k/2+2)
k+2∑
i=1

k(k + 2)x2
i − k

k∑
j=1

x2
j


=

k+2∑
j=1

x2
j

−(k/2+2) k(k + 2)

k+2∑
i=1

x2
i − k(k + 2)

k+2∑
i=1

x2
i

 = 0 , (3.12)

as desired, thus ∆g = 0 and so g is also harmonic.

8



Part c)

Let 0 < a < |x| < b and define τxa = inf{t > 0 : ‖Bx
t ‖ = a} to be the hitting time of the

sphere Sa , {y ∈ Rd : |y| = a}, and similarly for τxb , by the Brownian motion Bx. We
want to calculate P(τxa < τxb ) and P(τxa <∞).

For ease let us define our harmonic function generally where

f(x) =

{
log ‖x‖ if d = 2

‖x‖2−d if d ≥ 3
, (3.13)

which we showed satisfies ∆f = 0 in either case. Then from part a) we know that the
process

Mt = f(Bx
t )− f(x) (3.14)

is a martingale. Let τ , τxa ∧ τxb . We ultimately want to calculate E[Mτ ], but before we
get there we need to consider Mτ∧n and then ultimately take the limit as n → ∞ using
the dominated convergence theorem.

We begin by noting that in the case τ <∞, so τ ∧ n = τ in the limit, we have

|Mτ | ≤ max{|f(a)− f(x)|, |f(b)− f(x)|} (3.15)

where we note that log a < log b but a−(d−2) > b−(d−2) in their respective cases. Either
way, both of these sums are finite and hence we see that Mτ is uniformly bounded. Fur-
thermore in this case we have τ ∧ n→ τ in the limit, hence Mτ∧n →Mτ , which is clearly
a measurable function.

But by Lemma 2.3, we know that supt≥0Bt = +∞ almost surely, hence we see that
for any fixed a and b we have P(τ <∞) = 1 and P(τ =∞) = 0, so almost surely we have

lim
n→∞

E[Mτ∧n] = E[ lim
n→∞

Mτ∧n] = E[Mτ ] . (3.16)

But then since τ ∧ n <∞ is a bounded stopping time for any fixed n, we may apply the
optional sampling theorem to see that

E[Mτ ] = E[Mτ∧n] = E[Mτ∧n|F0] = M0 = 0 . (3.17)

Calculating the expectation, we have

E[Mτ ] = E[Mτa∧τb ] = (f(a)− f(x))P(τxa < τxb ) + (f(b)− f(x))(1− P(τxa < τxb )) = 0 ,

so P(τxa < τxb ) =
f(b)− f(x)

f(b)− f(a)
=


log(b)− log(x)

log(b)− log(a)
if d = 2

‖x‖−(d−2)bd−2 − 1

a−(d−2)bd−2 − 1
if d ≥ 3

. (3.18)

To calculate P(τxa < ∞) we want to take the limit τxb → ∞, which due to the continuity
of Brownian motion is equivalent to b → ∞. We note that for any b we have that as
events, {τxa < τxb } ⊆ {τxa < τxb+ε} for any ε > 0 and so since this is an expanding sequence
of events, by the continuity of probability (so we can bring the limit out in the second
equality) we have

P(τxa <∞) = P(
⋃
b>0

{τxa < τxb }) = lim
b→∞

P(τxa < τxb ) =

1 if d = 2(
a
‖x‖

)d−2
if d ≥ 3

. (3.19)
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In the case of d ≥ 3 we see that, since a < ‖x‖ and d−2 ≥ 1, we have 0 < P(τxa <∞) < 1,
which is stunningly different to P(τxa <∞) = 1 in the d = 2 case!

Part d)

Let U be a non-empty, bounded open subset of Rd and define σxU = sup{t : Bx
t ∈ U} to

be the last time that Bx visits U . Since open balls form the basis of the topology on Rn,
we have that U =

⋃
Λ B(x0, r), for some points x0, radii r, and a countable set Λ, where

B(x0, r) is the ball of radius r centred at x0. Thus to analyse P(σxU <∞) and P(σxU =∞)
it suffices to consider a single open ball U = B(x0, r) for some given x0 and r. We know
that a shifted Brownian motion is another Brownian motion, so we have for any r > 0

τxr = inf{t > 0 : Bx
t ∈ B(0, r)} = inf{t > 0 : Bx−x0

t ∈ B(x0, r)} . (3.20)

Consider the d = 2 case first. Then we know that τxa is finite almost surely. Let t1 = τxa
be the stopping time for the first time this occurs. But then Brownian motion is time in-
variant by the strong markov property, that is, Bx,(1) = {Bt+1−B1 : t ≥ 0} is a Brownian

motion independent of F1. Therefore, we see that t2 = inf{t > 0 : B
x−x0,(1)
t ∈ B(x0, r)}

is again finite almost surely. Continuing in this way, we have a sequence of times tn =
inf{t > n− 1 : Bx−x0 ∈ B(x0, r)} that almost surely converges to ∞ - in other words, Bx

almost surely returns to B(x0, a) infinitely often, meaning the last time it visits U is at
infinity, hence in d = 2 we have P(σxU =∞) = 1.

Recall that in the d ≥ 3 case we have 0 < P(τxa < ∞) < 1. As explained above, we
may without loss of generality consider the hitting time of B(0, r). We may consider
events of the form

An = {‖Bx
t ‖ > n for all t ≥ τxn3} . (3.21)

Again by Lemma 2.3 we know that τxn3 is finite almost surely. Then for any n3 ≥ ‖x‖ (so
B starts inside Sn3) we have

P(Acn) = E[1(∃ t ≥ τxn3 s.t. ‖Bx
t ‖ = n)]

= E[E[1(∃ t ≥ τxn3 s.t. ‖Bx
t ‖ = n)|Bτx

n3
= z]]

= E[P(∃ t ≥ τxn3 s.t. ‖Bx
t ‖ = n|Bτx

n3
= z)]

= E[P(∃ t ≥ 0 s.t. ‖Bz
t ‖ = n)]

= E[P(τ zn <∞)] = E

[(
n

n3

)d−2
]

=

(
1

n2

)d−2

, (3.22)

where we used the tower property in the second equality, the strong markov property of
Brownian motion in the fourth equality, and our result from part c) for d ≥ 3 in the sixth

equality since ‖z‖ = n3 by conditional assumption. But then since P(Acn) =
(

1
n2

)d−2

is summable, that is,
∑∞

n=1

(
1
n2

)d−2
< ∞, the Borel-Cantelli lemma tells us that only

finitely many Acn happen almost surely. In other words, for only finitely many n does B
return, which means that we must have that ‖Bt‖ → ∞ almost surely. Thus we see that
P(σxU <∞) = 1 for any arbitrary bounded open set U ⊆ Rd.
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Part e)

Let y ∈ Rd and define ζxy , inf{t > 0 : Bx
t = y}, we want to show that P(ζxy <∞) = 0 for

all d ≥ 2. To do this we can consider B(y, a) and take the limit a→ 0. Using our shifting
argument from the previous part, we need only consider the case y = 0, so let U = B(0, a)
and consider ζx0 = lima→0 τ

x
a . To start with, let x 6= 0 and let b > 0 be fixed, then we have

P(ζx0 < τxb ) ≤ P(lim
a→0

τxa < τxb ) = lim
a→0

P(τxa < τxb ) = 0 (3.23)

where the last equality holds when observing the limits in (3.18), in both cases (ultimately
f(a), on the denominator in both expressions, diverges as a → 0 in both cases). Taking
the limit b→∞ of both sides we see that P(ζx0 <∞) = 0 for all d ≥ 2.

In the case where x = 0, we can use an identical Markov property argument as in part d).
Let ε > 0, then

P(B0
t = 0 for some t ≥ ε) = E[E[1(B0

t = 0 for some t ≥ ε)|Bε = x]]

= E[P(Bx
t = 0 for some t ≥ 0)] = 0 . (3.24)

Therefore we can finally take the limit

P(ζ0
0 <∞) = lim

ε→0
P(B0

t = 0 for some t ≥ ε) = 0 (3.25)

and so for all d ≥ 2 we have P(ζxy <∞) = 0.
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4. Question 25 - Stochastic integral decomposition (W2)

Let B = {Bt : 0 ≤ t ≤ 1} be a one dimensional Brownian motion.

Part a)

Let Y ,
∫ 1

0 Btdt. We want to find the unique progressively measurable process Φ such
that

Y = E[Y ] +

∫ 1

0
ΦtdBt , (4.1)

which is guaranteed to exist and be unique due to Proposition 3.7. Noting that by Fubini’s
theorem we have

E

[∫ 1

0
Btdt

]
=

∫ 1

0
E[Bt]dt = 0 ,

this shows that we want the unique Φt such that∫ 1

0
ΦtdBt =

∫ 1

0
Btdt . (4.2)

Theorem 3.2 (Itô’s formula) states that for a C1,2 function f : [0,∞)× R→ R we have

f(t, Bt)− f(s,Bs) =

∫ t

s
∂tf(u,Bu)du+

∫ t

s
∂xf(u,Bu)dBu +

1

2

∫ t

s
∂2
xf(u,Bu)dt , (4.3)

and so comparing terms shows that we want to find f(t, x) such that ∂tf = x, ∂xf = −Φt

and ∂2
xf = 0. We claim that the function

f(t, x) = tx , so f(t, Bt) = tBt (4.4)

satisfies our desired equalities. Applying (4.3) to f , noting that B0 = 0 and ∂2
xf = 0, we

have

f(1, B1)− f(0, B0) = B1 =

∫ 1

0
Btdt+

∫ 1

0
t dBt . (4.5)

We know by definition that ∫ 1

0
dBt = B1 −B0 = B1 , (4.6)

hence we may express (4.5) as∫ 1

0
Btdt = B1 −

∫ 1

0
t dBt =

∫ 1

0
(1− t) dBt , (4.7)

and so taking Φt = 1− t we have found our unique process that satisfies (4.1). It is clear
that Φt is {Ft}-measurable, and that it has continuous sample paths and so we are done.
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Part b)

Define Sa , sup0≤t≤aBt. We first want write E[S1|FBt ] as a function of (t, St, Bt).

We see that for any t ≤ 1 we can break the supremum up into

S1 = St +

(
sup
t≤u≤1

(Bu − St)

)+

, (4.8)

where + denotes the positive part, i.e. x+ = max(0, x), which is easy to convince oneself
of with enough staring and diagrams. We can then write

E[S1|FBt ] = E

St +

(
sup
t≤u≤1

(Bu − St)

)+ ∣∣∣∣∣FBt


= St + E

( sup
t≤u≤1

(
(Bu −Bt)− (St −Bt)

))+ ∣∣∣∣∣Fbt , St = s, , Bt = b


= St + E

( sup
t≤u≤1

(Bu −Bt)− (s− b)

)+


where we used the FBt measurability of St and Bt throughout, and in the third line we used
the fact that Bu − Bt is independent of FBt and properties of sup to bring the constants
out. Noting that t ≤ u ≤ 1 is the same as 0 ≤ u − t ≤ 1 − t, and Bu − Bt ∼ Bu−t is
another Brownian motion by the strong Markov property, we have

E[S1|FBt ] = St + E[(S1−t − (s− b))+] . (4.9)

To calculate this expectation we note the tail probability formula for any integrable random
variable X, E[X+] =

∫∞
0 P(X > x)dx, so with a simple change of variables we have for any

constant c that E[(X−c)+] =
∫∞

0 P(X−c > x)dx =
∫∞
c P(X > x)dx =

∫∞
c (1−FX(x))dx.

So we finally arrive at

E[S1|FBt ] = St +

∫ ∞
St−Bt

(1− FS1−t(x))dx , f(t, St, Bt) , (4.10)

which we note by Exercise 6.3 is a well defined martingale since S1 is an integrable ran-
dom variable. Since we desire a unique progressively measurable process Φ such that
S1 = E[S1]+

∫ 1
0 ΦtdBt, we clearly want to now apply Itô’s formula to our above f(t, St, Bt).

We can then appeal to the Doob-Meyer decomposition theorem for martingales (usu-
ally stated for submartingales), which states that if we have martingales Mt and Nt, and
a stochastic process At, if Mt = Nt+At then we must have At ≡ 0. When we look at Itô’s
formula, we know that the dBt term (i.e. the stochastic integral part) is a martingale.
Therefore, since f(t, St, Bt) is a martingale, we see that when we apply Itô’s formula we
only need to consider the dBt term due to the Doob-Meyer theorem above. Therefore we
have

df(t, St, Bt) =
∂

∂Bt
f(t, St, Bt)dBt . (4.11)
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To calculate the partial derivative we can make a change of variables u = −x + St, so
dx = −du, which using the fundaemental theorem of calculus gives

∂

∂Bt
f(t, St, Bt) =

∂

∂Bt

∫ −∞
Bt

−(1− FS1−t(−u+ St))du = 1− FS1−t(St −Bt) . (4.12)

Integrating both sides of (4.11) from 0 to t we have∫ t

0
df(s, Ss, Bs) =

∫ t

0

∂

∂Bs
f(s, Ss, Bs)dBs ,

so f(t, St, Bt)− f(0, S0, B0) =

∫ t

0
(1− FS1−s(Ss −Bs))dBs ,

but then noting that we have

f(0, S0, B0) = E[S1|FB0 ] = E[S1] (4.13)

since we are conditioning on the trivial sigma algebra, we may finally write

E[S1|FBt ] = E[S1] +

∫ t

0
(1− FS1−s(Ss −Bs))dBs . (4.14)

We are nearly done, but to simplify this a bit further we may evaluate the inside of the
integrand. Recall from lectures that for x ≥ 0 (since St ≥ 0 for any t since B starts at 0),
we have the identity P(St ≥ x) = 2P(Bt ≥ x), so

FSt(u) =

∫ u

0

2√
2πt

e−
y2

2t dy ,

meaning we can write in terms of the standard normal CDF ΦZ(x) := P(Z ≤ x),

FS1−s(Ss −Bs) =

∫ Ss−Bs

0

2√
2π(1− s)

e
− y2

2(1−s)dy = 2

(
ΦZ

(
SS −BS√

1− s

)
− 1

2

)
, (4.15)

where the second equality is because we have a Gaussian integral with standard deviation√
1− s (but only on [0, Ss − Bs] instead of [−∞, Ss − Bs]). Therefore we finally see that

for all t ≤ 1 we have

E[S1|FBt ] = E[S1] + 2

∫ t

0

(
1− ΦZ

(
SS −BS√

1− s

))
dBs ,

but in particular we can take t = 1, meaning E[S1|FB1 ] = S1 (since S1 is FB1 measurable),
hence we have

S1 = E[S1] +

∫ 1

0
2

(
1− ΦZ

(
SS −BS√

1− s

))
︸ ︷︷ ︸

Φt

dBs . (4.16)

so our unique progressively measurable random process is precisely the function in the
integrand (not to confuse notation with the normal CDF ΦZ) and so we are done.

14



5. Question 35 - Stochastic harmonic oscillator (W1)

Part a)

Let A ∈Mn×n(R) be a deterministic matrix that does not depend on time, a(t) ∈Mn×1(R)
and σ(t) ∈ Mn×d(R) be bounded, deterministic functions of time and let B be a d-
dimensional Brownian motion. We will consider the linear SDE

dXt =
(
AXt + a(t)

)
dt+ σ(t)dBt . (5.1)

We start by obtaining the stochastic integrating factor given by

Zt , exp

(∫ t

0
Ads

)
= exp (At) , so Z−1

t = exp(−At) . (5.2)

Using Itô’s formula and the product rule, noting that d(exp(At)) = A exp(At)dt =
exp(At)Adt, we have

d(Z−1
t Xt) = d(Z−1

t )Xt + Z−1
t dXt + d(Z−1

t )dXt

= −e−AtAXtdt+
(
e−At − e−AtAdt

)((
AXt + a(t)

)
dt+ σ(t)dBt

)
= e−Ata(t)dt+ e−Atσ(t)dBt , (5.3)

where the third equality follows from the fact that (dt)2 and (dt)(dBt) ≈ (dt)3/2 are
negligilbe compared to the higher order terms. Thus integrating both sides from 0 to t we
have

e−AtXt −X0 =

∫ t

0
e−Asa(s)ds+

∫ t

0
e−Asσ(s)dBs ,

so Xt = eAtX0 +

∫ t

0
eA(t−s)a(s)ds+

∫ t

0
eA(t−s)σ(s)dBs . (5.4)

Part b)

Consider the equation for the stochastic harmonic oscillator where Bt is a one-dimensional
Brownian motion, {

dXt = Ytdt ,

mdYt = −kXtdt− cYtdt+ σdBt
, (5.5)

where m, k, c, σ > 0 are positive real constants. In light of part a), we can reformulate
this into a matrix equation given by

d

(
Xt

Yt

)
=

(
0 1

− k
m − c

m

)(
Xt

Yt

)
dt+

(
0
σ
m

)
dBt . (5.6)

Identifying this with (5.1) we may set

Xt =

(
Xt

Yt

)
, A =

(
0 1

− k
m − c

m

)
, a(t) = 0 , σ(t) =

(
0
σ
m

)
. (5.7)

Hence using our derived formula in (5.4), we have

Xt = eAt

(X0

Y0

)
+

(
0
σ
m

)∫ t

0
e−sdBs

 . (5.8)
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It is perfectly fine to leave the equation in this form, but for the sake of curiosity I will
present the final form of eAt without presenting many interluding calculations. To calculate
the matrix exponential we first want to diagonalise the matrix such that A = P−1DP
where P is the change of basis matrix with eigenvectors in the columns and D is the
diagonal matrix with eigenvalues on the diagonal (supposing that A is non-degenerate, so
k 6= 0). We see that the eigenvalues of A are

λ1,2 = − c

2m
±
√
c2 − 4mk

2m
=: −s± ω . (5.9)

With a straightforward calculation this gives eigenvectors of

v1 =

(
1
λ1

)
, v2 =

(
1
λ2

)
, so P =

(
1 1
λ1 λ2

)
. (5.10)

Hence we can calculate

exp(At) = exp(P−1DPt) = P−1 exp(Dt)P

= e−st

(
cosh(ωt) + s

ω sinh(ωt) −
(
s
ω + 1

)
sinh(ωt)(

1− s
ω

)
sinh(ωt) cosh(ωt)− s

ω sinh(ωt)

)
. (5.11)

Since we know that Pt := eAt is the “transition” matrix associated to the SDE, we must
have that each entry satisfies 0 ≤ (Pt)i,j ≤ 1, which can be checked with a routine calcu-
lation involving the hyperbolic trigonometric identities - we leave this as an exercise for
the reader.

Furthermore, we can elaborate on the integral part of (5.8). By Itô’s formula we have
that

d(e−sBs) = −e−sBsds+ e−sdBs , so

∫ t

0
e−sdBs = e−tBt +

∫ t

0
e−sBsds . (5.12)

We can then use (5.11) and (5.12) to find the more explicit form of Xt, which doesn’t fit
in the margin so we will leave it in the more simplified form of (5.8)!
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