Random Matrix Theory Assignment 1

Liam Carroll - 830916

Due date: 21 April 2020

Q1. Quaternion Matrices

Part a)

We will assume all of the data that has been given to us in the question. Let the Hermitian part of the self-dual matrix $Q \in \mathbb{C}^{2 N \times 2 N}$ be denoted as $H=Q+Q^{\dagger}$ where we know that $Q=\hat{\tau}_{2} Q^{T} \hat{\tau}_{2}$. Also assume a quaternion vector $q \in \mathbb{H}^{N}$ obeys the symmetry condition $q^{*}=\hat{\tau}_{2} q \tau_{2}$. Then

$$
\hat{\tau}_{2} H \hat{\tau}_{2}=\hat{\tau}_{2}\left(Q+Q^{\dagger}\right) \hat{\tau}_{2}=\hat{\tau}_{2} Q \hat{\tau}_{2}+\hat{\tau}_{2} Q^{\dagger} \hat{\tau}_{2}=Q^{T}+Q^{*}=\left(Q+Q^{\dagger}\right)^{*}=H^{*}
$$

Hence showing that $H^{*}=\hat{\tau}_{2} H \hat{\tau}_{2}$ as required.
Suppose that $v \in \mathbb{H}^{N}$ is one of the $2 N$ eigenvectors of H with eigenvalue $\lambda \in \mathbb{C}$. Then $H v=\lambda v$. We wish to use our conjugation condition to show that there is another eigenvector $v^{\prime} \in \mathbb{H}^{N}$ that is orthogonal to v yet shares the same eigenvalue, hence showing that it is doubly degenerate. We notice that

$$
\begin{aligned}
H v & =\lambda v \\
\Longrightarrow(H v)^{*} & =(\lambda v)^{*} \\
\Longrightarrow H^{*} v^{*} & =\lambda v^{*} \\
\Longrightarrow \hat{\tau}_{2} H \hat{\tau}_{2} v^{*} & =\lambda v^{*} \\
\Longrightarrow \hat{\tau}_{2}\left(\hat{\tau}_{2} H \hat{\tau}_{2} v^{*}\right) & =\hat{\tau}_{2}\left(\lambda v^{*}\right) \\
\Longrightarrow H\left(\hat{\tau}_{2} v^{*}\right) & =\lambda\left(\hat{\tau}_{2} v^{*}\right)
\end{aligned}
$$

Where we have used the fact that all eigenvalues λ of H must be real given that H is Hermitian. Also, $\left(\hat{\tau}_{2}\right)^{2}=\mathbb{1}_{2 N}$. Hence, we see that the vector $v^{\prime}=\hat{\tau}_{2} v \in \mathbb{H}^{N}$ is another vector that shares the the same eigenvalue λ. To prove orthogonality, we use the standard Frobenius inner product definition of an inner product on matrices.

Let $w_{1}, w_{2} \in \mathbb{C}^{N}$ be arbitrary.

$$
\begin{aligned}
\left\langle v, \hat{\tau}_{2} v\right\rangle=\left\langle v, v \tau_{2}\right\rangle & =\operatorname{tr} v^{\dagger} v \tau_{2} \\
& =\operatorname{tr}\left(\begin{array}{cc}
w_{1}^{\dagger} & -w_{2}^{T} \\
w_{2}^{\dagger} & w_{1}^{T}
\end{array}\right)\left(\begin{array}{cc}
w_{1} & w_{2} \\
-w_{2}^{*} & w_{1}^{*}
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& =\operatorname{tr}\left(\begin{array}{cc}
w_{1}^{\dagger} & -w_{2}^{T} \\
w_{2}^{\dagger} & w_{1}^{T}
\end{array}\right)\left(\begin{array}{cc}
i w_{2} & -i w_{1} \\
i w_{1}^{*} & i w_{2}^{*}
\end{array}\right) \\
& =i w_{1}^{\dagger} w_{2}-i w_{2}^{T} w_{1}^{*}-i w_{2}^{\dagger} w_{1}+i w_{1}^{T} w_{2}^{*} \\
& =i w_{1}^{\dagger} w_{2}-\left(i w_{1}^{\dagger} w_{2}\right)^{T}+\left(i w_{2}^{\dagger} w_{1}\right)^{T}-i w_{2}^{\dagger} w_{1} \\
& =i w_{1}^{\dagger} w_{2}-i w_{1}^{\dagger} w_{2}+i w_{2}^{\dagger} w_{1}-i w_{2}^{\dagger} w_{1} \\
& =0
\end{aligned}
$$

Hence, we can conclude that $\hat{\tau}_{2} v$ is orthogonal to the original eigenvector v. Since $\hat{\tau}_{2} v$ and v share the same eigenvalue λ and are orthogonal, and v was an arbitrary eigenvector, this proves that all eigenvalues of H are doubly degenerate.

Part b)

We wish to calculate the quaternion Gaussian vector integral over the self-dual Q

$$
\mathcal{G}(Q)=\int_{\mathbb{H}^{N}} d[q] \exp \left[-\operatorname{tr}(q-\eta)^{T} \hat{\tau}_{2} Q(q-\eta) \tau_{2}\right]
$$

by attempting to reduce it into the form of a Gaussian integral over a complex vector. First, we make the substitution $q \mapsto q-\eta \in \mathbb{H}^{N}$, where $d[q-\eta]=d[q]$ and the bounds of integration remain the same (i.e. over all of \mathbb{H}^{N}). Then using the properties as outlined in the question, we can calculate

$$
\begin{aligned}
\operatorname{tr} q^{T} \hat{\tau}_{2} Q q \tau_{2} & =\operatorname{tr} q^{T} \hat{\tau}_{2} Q\left(\hat{\tau}_{2} q^{*}\right) \\
& =\operatorname{tr} q^{T}\left(Q^{T}\right) q^{*} \\
& =\operatorname{tr}\left(q^{\dagger} Q q\right)^{T} \\
& =\operatorname{tr} q^{\dagger} Q q
\end{aligned}
$$

We can then calculate this quantity for an arbitrary $q \in \mathbb{H}^{N}$ (with $w_{1}, w_{2} \in \mathbb{C}^{N}$), self-dual $Q \in \mathbb{C}^{2 N \times 2 N}$ where $X_{1} \in \mathbb{C}^{N \times N}$ and $X_{2}, X_{3} \in \operatorname{ASym}_{\mathbb{C}}(N)$.

$$
\begin{aligned}
\operatorname{tr} q^{\dagger} Q q & =\operatorname{tr}\left(\begin{array}{cc}
w_{1}^{\dagger} & -w_{2}^{T} \\
w_{2}^{\dagger} & w_{1}^{T}
\end{array}\right)\left(\begin{array}{cc}
X_{1} & X_{2} \\
X_{3} & X_{1}^{T}
\end{array}\right)\left(\begin{array}{cc}
w_{1} & w_{2} \\
-w_{2}^{*} & w_{1}^{*}
\end{array}\right) \\
& =\operatorname{tr}\left(\begin{array}{cc}
w_{1}^{\dagger} & -w_{2}^{T} \\
w_{2}^{\dagger} & w_{1}^{T}
\end{array}\right)\left(\begin{array}{ll}
X_{1} w_{1}-X_{2} w_{2}^{*} & X_{1} w_{2}+X_{2} w_{1}^{*} \\
X_{3} w_{1}-X_{1}^{T} w_{2}^{*} & X_{3} w_{2}+X_{1}^{T} w_{1}^{*}
\end{array}\right) \\
& =w_{1}^{\dagger}\left(X_{1} w_{1}-X_{2} w_{2}^{*}\right)-w_{2}^{T}\left(X_{3} w_{1}-X_{1}^{T} w_{2}^{*}\right)+w_{2}^{\dagger}\left(X_{1} w_{2}+X_{2} w_{1}^{*}\right)+w_{1}^{T}\left(X_{3} w_{2}+X_{1}^{T} w_{1}^{*}\right) \\
& =\left(w_{1}^{\dagger} X_{1} w_{1}+w_{1}^{T} X_{1}^{T} w_{1}^{*}\right)+\left(w_{2}^{\dagger} X_{1} w_{2}+w_{2}^{T} X_{1}^{T} w_{2}^{*}\right) \\
& +\left(w_{2}^{\dagger} X_{2} w_{1}^{*}-w_{1}^{\dagger} X_{2} w_{2}^{*}\right)+\left(w_{1}^{T} X_{3} w_{2}-w_{2}^{T} X_{3} w_{1}\right) \\
& =2 w_{1}^{\dagger} X_{1} w_{1}+2 w_{2}^{\dagger} X_{1} w_{2}+2 w_{2}^{\dagger} X_{2} w_{1}^{*}-2 w_{2}^{T} X_{3} w_{1}
\end{aligned}
$$

Here we have used the fact that $w_{1}^{T} X_{1}^{T} w_{1}^{*}=\left(w_{1}^{\dagger} X_{1} w_{1}\right)^{T}=w_{1}^{\dagger} X_{1} w_{1}$ since $w_{1}^{\dagger} X_{1} w_{1}$ is a scalar. Also, $-w_{1}^{\dagger} X_{2} w_{2}^{*}=w_{1}^{\dagger} X_{2}^{T} w_{2}^{*}=\left(w_{2}^{\dagger} X_{2} w_{1}^{*}\right)^{T}=w_{2}^{\dagger} X_{2} w_{1}^{*}$.

Unfortunately, despite staring at this for many many weeks, I have been unable to come up with a method of simplifying this expression into something more usable. Whilst the likes of the $w_{1}^{\dagger} X_{1} w_{1}$ term look good, it appears to me that there is a factorisation method using the symmetry of Q where we would "wedge in" particular factors, e.g. something like $\left(w_{1}-w_{2}\right)^{\dagger}\left(2 X_{1}+X_{2}+X_{3}\right)\left(w_{1}-w_{2}\right)$ (this one obviously doesn't work, its just an example of what I had been thinking). I also attempted to use the fact that $\operatorname{tr} q^{\dagger} Q q=\operatorname{tr} q^{T} Q^{T} q$ and exploit symmetry there that, understandably, produced the same result as above. I then thought about decompositions of the self-dual Q but my research, despite providing interesting facts about the Schur decomposition of a the Hermitian self-dual H, provided nothing on Q. I then also tried to exploit the fact that $Q=\frac{1}{2}\left[\left(Q+Q^{T}\right)+\left(Q-Q^{T}\right)\right]$ but again, no luck. If X_{2} and X_{3} were symmetric as opposed to anti symmetric, then we would have been able to cancel these terms in our above calculation which would have left the terms $2 w_{1}^{\dagger} X_{1} w_{1}+2 w_{2}^{\dagger} X_{1} w_{2}$ which would result in a factorisable integral over w_{1} and w_{2}. Of course, this doesn't account for the contributions of X_{2} and X_{3} so it cannot be true. Alas...

I then had the thought of potentially abusing some notation using a similar process to the complex case in the notes. For a quaternion vector $q \in \mathbb{H}^{n}$, we can consider it as be comprised of $q=C+j K$ for $C, K \in \mathbb{C}^{2 N}$ - then we can define (which I have never seen written anywhere but I'm just gonna go with it) $\operatorname{Co}(q)=C$ and $\mathrm{Qu}(q)=K$ being the "Complex" and "Quaternion" parts of q. We can then define, in a slightly reversed way to the notes,

$$
q=\binom{\mathrm{Co}(q)}{\mathrm{Qu}(q)}=\binom{C}{K} \quad A=\left(\begin{array}{cc}
Q+Q^{\dagger} & j\left(Q-Q^{\dagger}\right) \\
-j\left(Q-Q^{\dagger}\right) & Q+Q^{\dagger}
\end{array}\right)
$$

Under these circumstances, we would have

$$
\operatorname{det}(A)=2^{4 N} \operatorname{det}(Q)=2^{4 N} \operatorname{det}\left(X_{1}\right) \operatorname{det}\left(\left(X_{1}^{-1}\right)^{T}-X_{3} X_{1}^{-1} X_{2}\right)
$$

Maybe, with any luck and very little conviction, some sort of formulation along these lines could lead to a result that looks kind of like

$$
\mathcal{G}(Q)=\frac{(2 \pi)^{2 N}}{\sqrt{\operatorname{det}(A)}}
$$

Unfortunately, this is the best I could muster up. I cannot wait (pleasepleasepleasepleaseplease) to see the solution to this because it has puzzled me for weeks!

Part c)

Unfortunately due to my lack of concrete answer for part b), I also don't have a great deal of certainty as to why the result doesn't change for an arbitrary choice of $\eta \in \mathbb{C}^{2 N \times 2}$. My best guess is that it has something to do with the analytic continuation arguments presented in the notes - however, this was dealing with a symmetric matrix C, so I am unsure why we are able to use this in our case. Nonetheless, this is a best guess.

Q2. Correlated Real Cauchy-Lorentz Ensemble

Consider the correlated real Cauchy-Lorentz ensemble which is given by the distribution

$$
\begin{equation*}
P(X \mid C)=\underbrace{\left(\frac{\operatorname{det} C^{p / 2}}{\prod_{j=1}^{p} \pi^{n / 2} \Gamma[\mu+j / 2] /(2 \Gamma[\mu+(j+n) / 2])}\right)}_{A} \underbrace{\frac{1}{\operatorname{det}\left(\mathbb{1}_{p}+X^{T} C X\right)^{(p+n) / 2+\mu}}}_{f(X)} \tag{2.1}
\end{equation*}
$$

Where $\mu \geq 0, \Gamma$ is the Gamma function, and $C \in \operatorname{Sym}_{+}(n)$.

Part a)

To check that $P(X \mid C)$ is normalised, we wish to show that $\int_{\mathbb{R}^{n \times p}} P(X \mid C) d[X]=1$.
We first start by rescaling P. Since $C \in \operatorname{Sym}_{+}(n)$, we can write $C=D^{T} D$ for some $D \in \mathrm{GL}_{\mathbb{R}}(n)$. This also gives us $\operatorname{det}(C)=\operatorname{det}\left(D^{T} D\right)=\operatorname{det}(D)^{2}$. We can now make the substitution $U=D X$, where, for column vectors X_{i} we have

$$
\begin{aligned}
d[U]=d[D X] & =d\left[D X_{1}\right] \ldots d\left[D X_{p}\right] \\
& =\operatorname{det}(D) d\left[X_{1}\right] \ldots \operatorname{det}(D) d\left[X_{p}\right] \\
& =(\operatorname{det}(D))^{p} d\left[X_{1}\right] \ldots d\left[X_{p}\right] \\
& =\operatorname{det}(C)^{p / 2} d[X]
\end{aligned}
$$

and the support on U remains as $\mathbb{R}^{n \times p}$. Then

$$
\begin{align*}
\int_{\mathbb{R}^{n \times p}} P(X \mid C) d[X] & =A \int_{\mathbb{R}^{n \times p}} \frac{d[X]}{\operatorname{det}\left(\mathbb{1}_{p}+X^{T} C X\right)^{(p+n) / 2+\mu}} \\
& =A \int_{\mathbb{R}^{n \times p}} \frac{d[X]}{\operatorname{det}\left(\mathbb{1}_{p}+(D X)^{T}(D X)\right)^{(p+n) / 2+\mu}} \\
& =A \int_{\mathbb{R}^{n \times p}} \frac{\operatorname{det}(C)^{-p / 2} d[U]}{\operatorname{det}\left(\mathbb{1}_{p}+U^{T} U\right)^{(p+n) / 2+\mu}} \\
& =\underbrace{\left(\frac{1}{\prod_{j=1}^{p} \pi^{n / 2} \Gamma[\mu+j / 2] /(2 \Gamma[\mu+(j+n) / 2])}\right)}_{A^{\prime}} \int_{\mathbb{R}^{n \times p}} \frac{d[X]}{\operatorname{det}\left(\mathbb{1}_{p}+X^{T} X\right)^{(p+n) / 2+\mu}} \tag{2.2}
\end{align*}
$$

(In the last line we replaced U with X [not the same X as at the start] for ease of keeping notation consistent with the question).

We now wish to $\operatorname{deform} \operatorname{det}\left(\mathbb{1}_{p}+X^{T} X\right)$ into something more manageable. Firstly, we appeal to the following statement:

Let $A \in \mathbb{R}^{p \times p}, B \in \mathbb{R}^{p \times n}, C \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{n \times n}$ be matrices where D is invertible. Then

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \tag{2.3}\\
C & D
\end{array}\right)=\operatorname{det}(D) \operatorname{det}\left(A-B D^{-1} C\right)
$$

Using equation (2.3), we see that

$$
\begin{aligned}
\operatorname{det}\left(\mathbb{1}_{p}+X^{T} X\right) & =\operatorname{det}\left(\mathbb{1}_{n}\right) \operatorname{det}\left(\mathbb{1}_{p}-X^{T} \mathbb{1}_{p}^{-1}(-X)\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
\mathbb{1}_{p} & X^{T} \\
-X & \mathbb{1}_{n}
\end{array}\right)
\end{aligned}
$$

If we then make the substitution $X=\left(x_{1}, \tilde{X}\right)$ with $x_{1} \in \mathbb{R}^{n \times 1}$ and $\tilde{X} \in \mathbb{R}^{n \times(p-1)}$, then (with $\mathbf{0}_{p}$ referring to the p-dimensional 0 vector).

$$
\begin{align*}
\operatorname{det}\left(\begin{array}{cc}
\mathbb{1}_{p} & X^{T} \\
-X & \mathbb{1}_{n}
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cc}
\mathbb{1}_{p} & \binom{x_{1}^{T}}{\tilde{X}^{T}} \\
-\left(x_{1}, \tilde{X}\right) & \mathbb{1}_{n}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
1 & \mathbf{0}_{p-1} & x_{1}^{T} \\
\mathbf{0}_{p-1} & \mathbb{1}_{p-1} & \tilde{X}^{T} \\
-x_{1} & -\tilde{X} & \mathbb{1}_{n}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
1 & \mathbf{0}_{p-1} & x_{1}^{T} \\
\mathbf{0}_{p-1} & \mathbb{1}_{p-1} & \tilde{X}^{T} \\
0 & -\tilde{X} & \mathbb{1}_{n}+x_{1} x_{1}^{T}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
1 & \mathbf{0}_{p-1} & \mathbf{0}_{n} \\
\mathbf{0}_{p-1} & \mathbb{1}_{p-1} & \tilde{X}^{T} \\
\mathbf{0}_{n} & -\tilde{X} & \mathbb{1}_{n}+x_{1} x_{1}^{T}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
\mathbb{1}_{p-1} & \tilde{X}^{T} \\
-\tilde{X} & \mathbb{1}_{n}+x_{1} x_{1}^{T}
\end{array}\right) \tag{2.4}
\end{align*}
$$

Where we performed the elementary row operations (thus preserving the determinant) of $R_{3} \mapsto R_{3}+x_{1} R_{1}$, followed by $C_{3} \mapsto C_{3}-x_{1}^{T} C_{1}$.

We can now rescale \tilde{X} with the substitution $\tilde{X}=B \tilde{U}$ where $B=\sqrt{\mathbb{1}_{n}+x_{1} x_{1}^{T}}$. Then $d[\tilde{X}]=d[B \tilde{U}]=\operatorname{det}(B)^{(p-1)} d[\tilde{U}]$ - we will calculate $\operatorname{det}(B)$ later. In order to make B more user-friendly, we notice that $\mathbb{1}_{n}+x_{1} x_{1}^{T}$ is a real-symmetric positive definite matrix, hence meaning we can decompose it as $\mathbb{1}_{n}+x_{1} x_{1}^{T}=Q D Q^{T}$ for a real unitary matrix Q and a diagonal matrix D. This then gives us the following properties:

$$
\begin{gather*}
B=\sqrt{\mathbb{1}_{n}+x_{1} x_{1}^{T}}=Q \sqrt{D} Q^{T} \tag{2.5}\\
B^{T}=\left(Q \sqrt{D} Q^{T}\right)^{T}=\left(Q^{T}\right)^{T} \sqrt{D}^{T}(Q)^{T}=Q \sqrt{D} Q^{T}=B \tag{2.6}\\
\left(B^{2}\right)^{-1}=\left(Q D Q^{T}\right)^{-1}=Q D^{-1} Q^{T} \tag{2.7}\\
D^{k} D^{m}=D^{(k+m)} \quad \forall k, m \in \mathbb{R} \tag{2.8}
\end{gather*}
$$

Notice then that $B \in \operatorname{Sym}_{+}(n)$ (retains positive eigenvalues and is symmetric).

After this rescaling, (2.4) then becomes

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
\mathbb{1}_{p-1} & \tilde{X}^{T} \\
-\tilde{X} & \mathbb{1}_{n}+x_{1} x_{1}^{T}
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cc}
\mathbb{1}_{p-1} & (B \tilde{U})^{T} \\
-B \tilde{U} & B^{2}
\end{array}\right) \\
& =\operatorname{det}\left(\mathbb{1}_{n}+x_{1} x_{1}^{T}\right) \operatorname{det}\left(\mathbb{1}_{p-1}+\tilde{U}^{T} B^{T}\left(B^{2}\right)^{-1} B \tilde{U}\right) \\
& =\operatorname{det}\left(\mathbb{1}_{n}+x_{1} x_{1}^{T}\right) \operatorname{det}\left(\mathbb{1}_{p-1}+\tilde{U}^{T}\left(Q \sqrt{D} Q^{T}\right)\left(Q D^{-1} Q^{T}\right)\left(Q \sqrt{D} Q^{T}\right) \tilde{U}\right) \\
& =\operatorname{det}\left(\mathbb{1}_{n}+x_{1} x_{1}^{T}\right) \operatorname{det}\left(\mathbb{1}_{p-1}+\tilde{U}^{T} Q\left(\sqrt{D} D^{-1} \sqrt{D}\right) Q^{T} \tilde{U}\right) \\
& =\operatorname{det}\left(\mathbb{1}_{n}+x_{1} x_{1}^{T}\right) \operatorname{det}\left(\mathbb{1}_{p-1}+\tilde{U}^{T} Q \mathbb{1}_{n} Q^{T} \tilde{U}\right) \\
& =\operatorname{det}\left(\mathbb{1}_{n}+x_{1} x_{1}^{T}\right) \operatorname{det}\left(\mathbb{1}_{p-1}+\tilde{U}^{T} \tilde{U}\right)
\end{aligned}
$$

We can then calculate $\operatorname{det}\left(\mathbb{1}_{n}+x_{1} x_{1}^{T}\right)$ by factorising into upper-triangular \cdot lowertriangular by performing $C_{1} \mapsto C_{1}+C_{2} x_{1}$.

$$
\begin{aligned}
\operatorname{det}\left(\mathbb{1}_{n}+x_{1} x_{1}^{T}\right) & =\operatorname{det}\left(\begin{array}{cc}
1 & x_{1}^{T} \\
-x_{1} & \mathbb{1}_{n}
\end{array}\right) \\
& =\operatorname{det}\left[\left(\begin{array}{cc}
1+x_{1}^{T} x_{1} & x_{1}^{T} \\
0 & \mathbb{1}_{n}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-x_{1} & \mathbb{1}_{n}
\end{array}\right)\right] \\
& =\operatorname{det}\left(1+x_{1}^{T} x_{1}\right) \operatorname{det}\left(\mathbb{1}_{n}-0\right) \operatorname{det}(1) \operatorname{det}\left(\mathbb{1}_{n}-0\right) \\
& =1+x_{1}^{T} x_{1}
\end{aligned}
$$

This then implies that $\operatorname{det}(B)=\operatorname{det}\left(\sqrt{\mathbb{1}_{n}+x_{1} x_{1}^{T}}\right)=\left(1+x_{1}^{T} x_{1}\right)^{1 / 2}($ which is clearly well defined), hence $d[\tilde{X}]=\left(1+x_{1}^{T} x_{1}\right)^{(p-1) / 2} d[\tilde{U}]$.

Combining all of this into our integral in (2.2), we get

$$
\begin{aligned}
\int_{\mathbb{R}^{n \times p}} \frac{d[X]}{\operatorname{det}\left(\mathbb{1}_{p}+X^{T} X\right)^{(p+n) / 2+\mu}} & =\int_{\mathbb{R}^{n \times p}} d\left[x_{1}\right] d[\tilde{X}] \operatorname{det}\left(\begin{array}{cc}
\mathbb{1}_{p-1} & \tilde{X}^{T} \\
-\tilde{X} & \mathbb{1}_{n}+x_{1} x_{1}^{T}
\end{array}\right)^{-((p+n) / 2+\mu)} \\
& =\int_{\mathbb{R}^{n \times p}} \frac{d\left[x_{1}\right]\left(1+x_{1}^{T} x_{1}\right)^{(p-1) / 2} d[\tilde{U}]}{\left[\operatorname{det}\left(\mathbb{1}_{n}+x_{1} x_{1}^{T}\right) \operatorname{det}\left(\mathbb{1}_{p-1}+\tilde{U}^{T} \tilde{U}\right)\right]^{(p+n) / 2+\mu}} \\
& =\int_{\mathbb{R}^{n \times p}} \frac{d\left[x_{1}\right]\left(1+x_{1}^{T} x_{1}\right)^{(p-1) / 2} d[\tilde{U}]}{\left[\left(1+x_{1}^{T} x_{1}\right) \operatorname{det}\left(\mathbb{1}_{p-1}+\tilde{U}^{T} \tilde{U}\right)\right]^{(p+n) / 2+\mu}} \\
& =\int_{\mathbb{R}^{n}} \frac{\left(1+x_{1}^{T} x_{1}\right)^{(p-1) / 2} d\left[x_{1}\right]}{\left(1+x_{1}^{T} x_{1}\right)^{((p+n) / 2+\mu}} \int_{\mathbb{R}^{n \times(p-1)}} \frac{d[\tilde{U}]}{\operatorname{det}\left(\mathbb{1}_{p-1}+\tilde{U}^{T} \tilde{U}\right)^{(p+n) / 2+\mu}} \\
& =\int_{\mathbb{R}^{n}} \frac{d\left[x_{1}\right]}{\left(1+x_{1}^{T} x_{1}\right)^{((n+1) / 2+\mu)}} \int_{\mathbb{R}^{n \times(p-1)}} \frac{d[\tilde{U}]}{\operatorname{det}\left(\mathbb{1}_{p-1}+\tilde{U}^{T} \tilde{U}\right)^{(p+n) / 2+\mu}}
\end{aligned}
$$

Each time we perform the iteration, we will get $d\left[\tilde{X}_{j}\right]=\left(1+x_{j}^{T} x_{j}\right)^{(p-j) / 2} d[\tilde{U}]$ over $j=1, \ldots, p$. Hence, when we see how this behaves on the second last line of the above calculation, we see that this will lead to a factor of $j / 2$ in the exponent of the denominator.

Thus, through great toil and hardship, we then arrive at

$$
\int_{\mathbb{R}^{n \times p}} \frac{d[X]}{\operatorname{det}\left(\mathbb{1}_{p}+X^{T} X\right)^{(p+n) / 2+\mu}}=\prod_{j=1}^{p} \int_{\mathbb{R}^{n}} \frac{d\left[x_{j}\right]}{\left(1+x_{j}^{T} x_{j}\right)^{(n+j) / 2+\mu}}
$$

Through a change of variables into n-dimensional spherical coordinates where the Jacobian is, disregarding the angular components, r_{j}^{n-1}, and using a well formulated trick with the Dirac delta function that I wasn't quite able to show, we arrive at

$$
\int_{\mathbb{R}^{n}} \frac{d\left[x_{j}\right]}{\left(1+x_{j}^{T} x_{j}\right)^{(n+j) / 2+\mu}}=\int_{\mathbb{R}^{n}} \delta\left(1-x^{T} x\right) d[x] \int_{0}^{\infty} \frac{r_{j}^{n-1} d r_{j}}{\left(1+r_{j}^{2}\right)^{(n+j) / 2+\mu}}
$$

We then see that the first integral is the volume of the unit sphere which can be computed using the following trick

$$
\int_{-\infty}^{\infty} e^{x(i k-a)} d k=2 \pi \delta(x)
$$

Then,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \delta\left(1-x^{T} x\right) d[x] & =\int_{\mathbb{R}^{n}}\left(\int_{-\infty}^{\infty} \exp \left[\left(1-x^{T} x\right)(i t+1)\right] \frac{d t}{2 \pi}\right) d[x] \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}^{n}} \int_{-\infty}^{\infty} e^{\left(1-\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\right)(i t+1)} d t d x_{1} \ldots d x_{n} \\
& =\frac{1}{2 \pi} \int_{t=-\infty}^{t=\infty} e^{(i t+1)}\left(\int_{-\infty}^{\infty} e^{-(i t+1) x^{2}} d x\right)^{n} d t \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i t+1}\left(\frac{\pi}{i t+1}\right)^{n / 2} d t \quad \text { for } \operatorname{Im}(t)<1 \\
& =\frac{\pi^{n / 2-1}}{2} \int_{-\infty}^{\infty} \frac{1}{(i t+1)^{n / 2}} e^{i t+1} d t
\end{aligned}
$$

Then, we can use the fact from Laplace transform theory that

$$
\int_{0}^{\infty} s^{n} e^{-(t-a) s} d s=\frac{\Gamma(n+1)}{(t-a)^{n+1}} \Longrightarrow \frac{1}{(i t+1)^{n / 2}}=\frac{1}{\Gamma(n / 2)} \int_{0}^{\infty} s^{n / 2-1} e^{-(i t+1) s} d s
$$

to continue the above calculation with

$$
\begin{aligned}
& =\frac{\pi^{n / 2-1}}{2 \Gamma[n / 2]} \int_{-\infty}^{\infty}\left(\int_{0}^{\infty} s^{n / 2-1} e^{-(i t+1) s} d s\right) e^{i t+1} d t \\
& =\frac{\pi^{n / 2-1}}{2 \Gamma[n / 2]} \int_{0}^{\infty} s^{n / 2-1}\left(\int_{-\infty}^{\infty} e^{(1-s)(i t+1)} d t\right) d s \\
& =\frac{\pi^{n / 2-1}}{2 \Gamma[n / 2]} \int_{0}^{\infty} s^{n / 2-1} 2 \pi \delta(1-s) d s \\
& =\frac{\pi^{n / 2}}{\Gamma[n / 2]}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \int_{\mathbb{R}^{n}} \delta\left(1-x^{T} x\right) d[x]=\frac{\pi^{n / 2}}{\Gamma[n / 2]} \tag{2.9}
\end{equation*}
$$

Unfortunately, we notice that the standard definition of the volume of the unit ball is $V_{n}=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}$, which is very slightly out from our above calculation, however I was unable to find where this factor went missing. Nonetheless, this $\Gamma[n / 2]$ factor cancels out in the final calculation regardless, so it is not too detrimental.

We can then perform the integral in r_{j} similarly.

$$
\begin{align*}
\int_{0}^{\infty} \frac{r_{j}^{n-1} d r_{j}}{\left(1+r_{j}^{2}\right)^{(n+j) / 2+\mu}} & =\int_{0}^{\infty} \frac{\left(r_{j}^{2}\right)^{n / 2-1} r_{j} d r_{j}}{\left(1+r_{j}^{2}\right)^{(n+j) / 2+\mu}} \\
& =\frac{1}{2} \int_{0}^{\infty} \frac{t^{n / 2-1} d t}{(1+t)^{(n+j) / 2+\mu}} \\
& =\frac{1}{2 \Gamma[(n+j) / 2+\mu]} \int_{0}^{\infty} t^{n / 2-1}\left(\int_{0}^{\infty} s^{((n+j) / 2+\mu)-1} e^{-(t+1) s} d s\right) d t \\
& =\frac{1}{2 \Gamma[(n+j) / 2+\mu]} \int_{0}^{\infty} s^{((n+j) / 2+\mu)-1} e^{-s}\left(\int_{0}^{\infty} t^{n / 2-1} e^{-s t} d t\right) d s \\
& =\frac{\Gamma[n / 2]}{2 \Gamma[(n+j) / 2+\mu]} \int_{0}^{\infty} s^{((n+j) / 2+\mu)-1} e^{-s} s^{-n / 2} d s \\
& =\frac{\Gamma[n / 2]}{2 \Gamma[(n+j) / 2+\mu]} \int_{0}^{\infty} s^{j / 2+\mu-1} e^{-s} d s \\
& =\frac{\Gamma[n / 2] \Gamma[j / 2+\mu]}{2 \Gamma[(n+j) / 2+\mu]} \tag{2.10}
\end{align*}
$$

Combining the results from (2.9) and (2.10), we finally see that

$$
\begin{aligned}
\int_{\mathbb{R}^{n \times p}} \frac{d[X]}{\operatorname{det}\left(\mathbb{1}_{p}+X^{T} X\right)^{(p+n) / 2+\mu}} & =\prod_{j=1}^{p} \frac{\pi^{n / 2}}{\Gamma[n / 2]} \frac{\Gamma[n / 2] \Gamma[j / 2+\mu]}{2 \Gamma[(n+j) / 2+\mu]} \\
& =\prod_{j=1}^{p} \frac{\pi^{n / 2} \Gamma[j / 2+\mu]}{2 \Gamma[(n+j) / 2+\mu]}=\frac{1}{A^{\prime}}
\end{aligned}
$$

Hence, we can conclude that indeed $P(X \mid C)$ is normalised.

Part b)

Assume we have measured a time series matrix V with $p \geq n$ and $V V^{T}$ is invertible, and furthermore assume it follows the distribution given in (2.1). We wish to compute the self-consistent maximal likelihood $P\left(. \mid C_{0}\right)$ where $C_{0} \in \mathcal{C} \in \operatorname{Sym}_{+}(n)$.

We first wish to calculate the \log-likelihood of P, namely

$$
\begin{aligned}
\log [P(V \mid C)] & =\frac{p}{2} \log (\operatorname{det} C)-\left(\frac{p+n}{2}+\mu\right) \log \left(\operatorname{det}\left(\mathbb{1}_{p}+V^{T} C V\right)\right)-\sum_{j=1}^{p} \log \left(\frac{\pi^{n / 2} \Gamma[\mu+j / 2]}{2 \Gamma[\mu+(j+n) / 2]}\right) \\
& =\frac{p}{2} \operatorname{tr} \log (C)-\left(\frac{p+n}{2}+\mu\right) \operatorname{tr} \log \left(\mathbb{1}_{p}+V^{T} C V\right)-\sum_{j=1}^{p} \log \left(\frac{\pi^{n / 2} \Gamma[\mu+j / 2]}{2 \Gamma[\mu+(j+n) / 2]}\right)
\end{aligned}
$$

To find where this is maximised, i.e. at the extremum C_{0}, we wish to solve $\nabla_{C} \log [P(V \mid C)]=$ 0 . We will make use of the fact that in lectures we calculated $\nabla_{A} \operatorname{tr} \log (A)=A^{-1}$ for $\mathcal{O}=\operatorname{Sym}(n) \supset \operatorname{Sym}_{+}(n)$. We also note that $\nabla_{A}\left(\mathbb{1}_{p}+V^{T} C V\right)=V^{T}()$.$V (poorly defined notation sorry).$

$$
\nabla_{C} \log [P(V \mid C)]=\frac{p}{2} C^{-1}-\left(\frac{p+n+2 \mu}{2}\right) V\left(\mathbb{1}_{p}+V^{T} C V\right)^{-1} V^{T}=0
$$

Which tells us that C_{0}, the extremum, must satisfy

$$
\frac{p}{2} C_{0}^{-1}-\left(\frac{p+n+2 \mu}{2}\right) V\left(\mathbb{1}_{p}+V^{T} C_{0} V\right)^{-1} V^{T}=0
$$

We can then appeal to the Neumann series for operators that states $(\mathbb{1}-A)^{-1}=\sum_{j=0}^{\infty} A^{j}$. Plugging this in to our above equation, we get

$$
\begin{gathered}
\frac{p}{2} C_{0}^{-1}-\left(\frac{p+n+2 \mu}{2}\right) \sum_{k=0}^{\infty}(-1)^{k} V\left(V^{T} C_{0} V\right)^{k} V^{T}=0 \\
\Longrightarrow \frac{p}{p+n+2 \mu} C_{0}^{-1}=\sum_{k=0}^{\infty}(-1)^{k}\left(V V^{T} C_{0}\right)^{k+1} C_{0}^{-1} \\
\Longrightarrow \frac{p}{p+n+2 \mu} \mathbb{1}_{n}=\left(V V^{T} C_{0}\right) \sum_{k=0}^{\infty}(-1)^{k}\left(V V^{T} C_{0}\right)^{k} \\
\Longrightarrow \frac{p}{p+n+2 \mu} \mathbb{1}_{n}=\left(V V^{T} C_{0}\right)\left(\mathbb{1}_{n}+V V^{T} C_{0}\right)^{-1} \\
\Longrightarrow \frac{p}{p+n+2 \mu}\left(\mathbb{1}_{n}+V V^{T} C_{0}\right)=V V^{T} C_{0} \\
\therefore C_{0}=\frac{p}{n+2 \mu}\left(V V^{T}\right)^{-1}
\end{gathered}
$$

We know that our quantity for C_{0} is well defined because $V V^{T}$ is invertible by assumption. Hence, C_{0} is the maximal likelihood value for the parameter C for the correlated real Cauchy-Lorentz ensemble.

Q3. Complex Uncorrelated Wishart-Laguerre Ensemble

Let $X \in \mathbb{C}^{n \times p}$ be drawn from the $\chi \mathrm{GUE}$ with distribution

$$
P(X)=\frac{1}{(\pi / n)^{n p}} e^{-n \operatorname{tr} X X^{\dagger}}
$$

We wish to show that the limiting level density yields the Marčenko-Pastur distribution for $n, p \rightarrow \infty$ with $\lim _{n \rightarrow \infty} p / n=\gamma \in[1, \infty)$.

We start with the following equation

$$
\begin{equation*}
\int_{\mathbb{C}^{n \times p}} d[X] \partial_{X_{a b}}\left(\left\{\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\}_{c d} X_{e f} e^{-n \operatorname{tr} X X^{\dagger}}\right)=0 \tag{3.1}
\end{equation*}
$$

Where $a, c, d, e=1, \ldots, n$ and $b, f=1, \ldots, p$. We can then explicitly calculate the matrix derivatives of X and X^{\dagger}

$$
\partial_{X_{a b}} X=E_{a b} \quad \partial_{X_{a b}} X^{\dagger}=0
$$

Where $E_{a b} \in \mathbb{C}^{n \times p}$ is the matrix with a 1 at the (a, b) entry. The second equation follows from the fact that $\frac{d}{d z}(\bar{z})=0$. Then we can write

$$
\begin{aligned}
\partial_{X_{a b}} X_{e f} e^{-n \operatorname{tr} X X^{\dagger}} & =\left(\partial_{X_{a b}} X_{e f}\right) e^{-n \operatorname{tr} X X^{\dagger}}+X_{e f} e^{-n \operatorname{tr} X X^{\dagger}} \partial_{X_{a b}} \operatorname{tr}\left(-n X X^{\dagger}\right) \\
& =\delta_{a e} \delta_{b f} e^{-n \operatorname{tr} X X^{\dagger}}-n X_{e f} e^{-n \operatorname{tr} X X^{\dagger}} \operatorname{tr}\left(E_{a b} X^{\dagger}\right) \\
& =-\left(n X_{a b}^{*} X_{e f}-\delta_{a e} \delta_{b f}\right) e^{-n \operatorname{tr} X X^{\dagger}}
\end{aligned}
$$

Using the resolvent formula from the notes, we can also write

$$
\begin{aligned}
\partial_{X_{a b}}\left[\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right] & =-\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\left[\partial_{X_{a b}}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)\right]\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1} \\
& =\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1} E_{a b} X^{\dagger}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}
\end{aligned}
$$

Which gives us

$$
\partial_{X_{a b}}\left\{\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\}_{c d}=\left\{\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\}_{c a}\left\{X^{\dagger}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\}_{b d}
$$

We then return to (3.1) and can now write

$$
\begin{aligned}
& \int_{\mathbb{C}^{n \times p}} d[X]\left\{\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\}_{c d}\left(n X_{a b}^{*} X_{e f}-\delta_{a e} \delta_{b f}\right) e^{-n \operatorname{tr} X X^{\dagger}} \\
& =\int_{\mathbb{C}^{n \times p}} d[X]\left\{\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\}_{c a}\left\{X^{\dagger}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\}_{b d} X_{e f} e^{-n \operatorname{tr} X X^{\dagger}}
\end{aligned}
$$

We then use the fabled loop equations to contract our indices. We first set $a=c$, $d=e$ and $b=f$, so summing over the indices we see that the relevant part of the first integral becomes

$$
\begin{aligned}
& \sum_{a=1}^{n} \sum_{b=1}^{p} \sum_{d=1}^{n}\left\{\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\}_{a d}\left(n X_{a b}^{*} X_{b d}^{T}-\delta_{a d} \delta_{b b}\right) \\
& =\sum_{a=1}^{n} \sum_{d=1}^{n}\left\{\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\}_{a d}\left(n\left(X^{*} X^{T}\right)_{a d}-p \delta_{a d}\right) \\
& =n \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\left(X^{*} X^{T}\right)^{T}-p \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1} \\
& =n \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1} X X^{\dagger}-p \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}
\end{aligned}
$$

Performing a similar operation for the right hand side, we then arrive at the first loop equation (where the factor of $(\pi / n)^{n p}$ cancels out on both sides of our equation)

$$
\begin{align*}
\left\langle n \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1} X X^{\dagger}-p\right. & \left.\operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\rangle \\
& =\left\langle\operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1} \operatorname{tr} X^{\dagger}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1} X\right\rangle \tag{3.2}
\end{align*}
$$

We then appeal to the fact that

$$
\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1} X X^{\dagger}=z\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}-\mathbb{1}_{n}
$$

Which simplifies (3.2) to

$$
\begin{aligned}
& n\left\langle\operatorname{tr}\left(z\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}-\mathbb{1}_{n}\right)\right\rangle-p\left\langle\operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\rangle \\
&=\left\langle\operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right) \operatorname{tr}\left(\left(z\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}-\mathbb{1}_{n}\right)\right\rangle \\
& \Longrightarrow n z\left\langle\operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\rangle- n^{2}-p\left\langle\operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\rangle \\
&=\left\langle\left(\operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right)^{2}\right\rangle-n\left\langle\operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\rangle
\end{aligned}
$$

Dividing by n^{2} and appropriately rearranging gives us

$$
\begin{equation*}
z\left\langle\left(\frac{1}{n} \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right)^{2}\right\rangle+\left(\frac{p}{n}-1-z\right)\left\langle\frac{1}{n} \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}\right\rangle+1=0 \tag{3.3}
\end{equation*}
$$

We then make the following assumption for the limiting Green function $G(z)$ of the random matrix $X X^{\dagger}$

$$
\left.\lim _{n, p \rightarrow \infty}\langle | \frac{1}{n} \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}-\left.G(z)\right|^{2}\right\rangle=0
$$

We can then simplify (3.3) with the following expansion (apologies for the poor layout - still getting the hang of LaTeX)

$$
\begin{aligned}
& z\left\langle\left(\left(\frac{1}{n} \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}-G(z)\right)+G(z)\right)^{2}\right\rangle \\
& +\left(\frac{p}{n}-1-z\right)\left\langle\left(\frac{1}{n} \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}-G(z)\right)+G(z)\right\rangle+1=0 \\
\Longrightarrow & z\left\langle\left(\frac{1}{n} \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}-G(z)\right)^{2}\right\rangle+2 z\left\langle\left(\frac{1}{n} \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}-G(z)\right) G(z)\right\rangle+z\left\langle G(z)^{2}\right\rangle \\
& +\left(\frac{p}{n}-1-z\right)\left\langle\left(\frac{1}{n} \operatorname{tr}\left(z \mathbb{1}_{n}-X X^{\dagger}\right)^{-1}-G(z)\right)\right\rangle+\left(\frac{p}{n}-1-z\right)\langle G(z)\rangle+1=0
\end{aligned}
$$

If we then take the limit $\lim _{n, p \rightarrow \infty}$, remembering that $\gamma=\lim _{n, p \rightarrow \infty} p / n$, we arrive at the quadratic equation in $G(z)$

$$
z G^{2}(z)+(\gamma-1-z) G(z)+1=0
$$

Which yields us the solutions

$$
G(z)=\frac{z+1-\gamma \pm \sqrt{(z+1-\gamma)^{2}-4 z}}{2 z}
$$

But since we need the asymptotic behaviour of $G(z) \approx 1 / z$ for $|z| \rightarrow \infty$, we will take the negative sign. Hence, after factorising the inside of the square root, we see that

$$
G(z)=\frac{z+1-\gamma-\sqrt{\left[z-(\sqrt{\gamma}+1)^{2}\right]\left[z-(\sqrt{\gamma}-1)^{2}\right]}}{2 z}
$$

For a real z, we require an imaginary part of $G(z)$ in order for $\hat{\rho}(\lambda)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \operatorname{Im} G(\lambda-i \varepsilon)$ to be well defined. This gives us the support $z \in\left((\sqrt{\gamma}-1)^{2},(\sqrt{\gamma}+1)^{2}\right)$. Hence,

$$
\begin{aligned}
& \hat{\rho}(\lambda)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \operatorname{Im} G(\lambda-i \varepsilon) \\
& =\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \operatorname{Im} \frac{\lambda-i \varepsilon+1-\gamma-\sqrt{\left[\lambda-i \varepsilon-(\sqrt{\gamma}+1)^{2}\right]\left[\lambda-i \varepsilon-(\sqrt{\gamma}-1)^{2}\right]}}{2 \lambda-i \varepsilon} \\
& \quad \therefore \hat{\rho}(\lambda)=\frac{\sqrt{\left[(\sqrt{\gamma}+1)^{2}-\lambda\right]\left[\lambda-(\sqrt{\gamma}-1)^{2}\right]}}{2 \pi \lambda}
\end{aligned}
$$

Therefore we see that we can write λ_{+}and λ_{-}as

$$
\lambda_{+}=(\sqrt{\gamma}+1)^{2} \quad \lambda_{-}=(\sqrt{\gamma}-1)^{2}
$$

Hence we have shown that the limiting level density for the χ GUE yields the Marčenko-Pastur distribution as desired.

Q4. Level spacing distribution for GSE matrix H

Let H be a Hermitian self-dual matrix, as defined in Ex 2.1 to satisfy $H=Q+Q^{\dagger}$, with dimension $N=2$. Let $X_{1} \in \mathbb{C}^{2 \times 2}$ and $X_{2}, X_{3} \in \operatorname{ASym}_{\mathbb{C}}(2)$, and let $a, b, c, d, e, f \in \mathbb{C}$ and $a^{\prime}, d^{\prime} \in \mathbb{R}$. Then all of these constraints give

$$
\begin{aligned}
& Q=\left(\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{1}^{T}
\end{array}\right) \quad X_{1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad X_{2}=\left(\begin{array}{cc}
0 & e \\
-e & 0
\end{array}\right) \quad X_{3}=\left(\begin{array}{cc}
0 & f \\
-f & 0
\end{array}\right) \\
& \Longrightarrow H=Q+Q^{\dagger}=\left(\begin{array}{cccc}
X_{1}+X_{1}^{\dagger} & X_{2}+X_{3}^{\dagger} \\
X_{3}+X_{2}^{\dagger} & \left(X_{1}+X_{1}^{\dagger}\right)^{T}
\end{array}\right) \\
&=\left(\begin{array}{cccc}
\frac{a^{\prime}}{b+\bar{c}} & b+\bar{c} & 0 & e-\bar{f} \\
0 & -\overline{e-\bar{f}} & -(e-\bar{f}) & 0 \\
\hline e-\bar{f} & 0 & b+\bar{c} & d^{\prime}
\end{array}\right)
\end{aligned}
$$

With suitable relabelling for $a, d \in \mathbb{R}$ and $b, c \in \mathbb{C}$ we get

$$
H=\left(\begin{array}{cccc}
a & b & 0 & c \\
\bar{b} & d & -c & 0 \\
0 & -\bar{c} & a & \bar{b} \\
\bar{c} & 0 & b & d
\end{array}\right)
$$

We can now calculate the two doubly degenerate eigenvalues of H

$$
\begin{aligned}
\operatorname{det}\left(H-\lambda \mathbb{1}_{4}\right)= & \operatorname{det}\left(\begin{array}{cccc}
a-\lambda & b & 0 & c \\
\bar{b} & d-\lambda & -c & 0 \\
0 & -\bar{c} & a-\lambda & \bar{b} \\
\bar{c} & 0 & b & d-\lambda
\end{array}\right) \\
= & (a-\lambda) \operatorname{det}\left(\begin{array}{ccc}
d-\lambda & -c & 0 \\
-\bar{c} & a-\lambda & \bar{b} \\
0 & b & d-\lambda
\end{array}\right)-b \operatorname{det}\left(\begin{array}{ccc}
\bar{b} & -c & 0 \\
0 & a-\lambda & \bar{b} \\
\bar{c} & b & d-\lambda
\end{array}\right) \\
& -c \operatorname{det}\left(\begin{array}{ccc}
\bar{b} & d-\lambda & -c \\
0 & -\bar{c} & a-\lambda \\
\bar{c} & 0 & b
\end{array}\right) \\
= & (a-\lambda)(d-\lambda)((a-\lambda)(d-\lambda)-b \bar{b}-c \bar{c})-b \bar{b}((a-\lambda)(d-\lambda)-b \bar{b}-c \bar{c}) \\
& -c \bar{c}((a-\lambda)(d-\lambda)-b \bar{b}-c \bar{c}) \\
= & \left((a-\lambda)(d-\lambda)-\left(|b|^{2}+|c|^{2}\right)\right)^{2} \\
= & \left(\lambda^{2}-(a+d) \lambda+\left(a d-\left(|b|^{2}+|c|^{2}\right)\right)\right)^{2}
\end{aligned}
$$

Solving the quadratic inside of the square (where the square is what gives us the double degeneracy that we proved in Q1) yields us

$$
\begin{aligned}
\lambda_{ \pm} & =\frac{(a+d) \pm \sqrt{(a+d)^{2}-4\left(a d-\left(|b|^{2}+|c|^{2}\right)\right)}}{2} \\
& =\frac{(a+d) \pm \sqrt{(a-d)^{2}+4\left(|b|^{2}+|c|^{2}\right)}}{2}
\end{aligned}
$$

Hence, we can write their difference

$$
\Delta \lambda=\sqrt{(a-d)^{2}+4\left(b b^{*}+c c^{*}\right)}
$$

To calculate the level spacing distribution, we wish to calculate

$$
p_{\mathrm{sp}}(s, \mathcal{I})=\frac{\left\langle\sum_{E_{j} \in \mathcal{I} \backslash\left\{E_{N}\right\}} \delta\left(s-\left(E_{j+1}-E_{j}\right) / \bar{s}\right)\right\rangle}{\left\langle\sum_{E_{j} \in \mathcal{I} \backslash\left\{E_{N}\right\}} 1\right\rangle}=\langle\delta(s-\Delta \lambda / \bar{s})\rangle
$$

Where we use $\mathcal{I}=\mathbb{R}$, hence simplifying the equation. Our first substitution will be to simplify the $b b^{*}$ and $c c^{*}$ terms.

$$
\begin{array}{cccc}
\begin{array}{lll}
a^{\prime}=a & d^{\prime}=d & \operatorname{Re}(b)=b^{\prime} \cos \left(\theta_{b}\right)
\end{array} & \operatorname{Im}(b)=b^{\prime} \sin \left(\theta_{b}\right) \\
a^{\prime} \in(-\infty, \infty) & d^{\prime} \in(-\infty, \infty) & b^{\prime} \in(0, \infty) & \theta_{b} \in[0,2 \pi] \\
\operatorname{Re}(c)=c^{\prime} \cos \left(\theta_{c}\right) & \operatorname{Im}(c)=c^{\prime} \sin \left(\theta_{c}\right) \\
c^{\prime} \in(0, \infty) & \theta_{c} \in[0,2 \pi] \\
& \Longrightarrow \Delta \lambda=\sqrt{\left(a^{\prime}-d^{\prime}\right)^{2}+4 b^{\prime 2}+4 c^{\prime 2}} \\
d[H]=[d a][d d][d \operatorname{Re}(b)][d \operatorname{Im}(b)][d \operatorname{Re}(c)][d \operatorname{Im}(c)]=b^{\prime} c^{\prime}\left[d a^{\prime}\right]\left[d d^{\prime}\right]\left[d b^{\prime}\right]\left[d c^{\prime}\right]\left[d \theta_{b}\right]\left[d \theta_{c}\right]
\end{array}
$$

We then make the better substitutions for $w, x, y, z \in \mathbb{R}$ where the support remains the same

$$
\begin{array}{clll}
w=a^{\prime}+d^{\prime} & x=a^{\prime}-d^{\prime} & y=2 b^{\prime} & z=2 c^{\prime} \\
w \in(-\infty, \infty) & x \in(-\infty, \infty) & y \in(0, \infty) & z \in(0, \infty) \\
& \Longrightarrow \Delta \lambda=\sqrt{x^{2}+y^{2}+z^{2}} & d[H]=\frac{1}{32} y z d w d x d y d z d \theta_{b} d \theta_{c}
\end{array}
$$

We can then make an even better substitution into spherical coordinates, where we note in particular that the domain of the azimuthal angle is $\psi \in[0, \pi / 2]$ because we have $b^{\prime}, c^{\prime} \in(0, \infty)$ instead of $(-\infty, \infty)$.

$$
\begin{aligned}
& w=\bar{S} \quad x=r \cos (\theta) \quad y=r \sin (\theta) \sin (\psi) \quad z=r \sin (\theta) \cos (\psi) \\
& \Longrightarrow d[H]=\frac{1}{32}\left(r^{2} \sin \theta\right)\left(r^{2} \sin ^{2} \theta \sin \psi \cos \psi\right) d \bar{S} d r d \theta d \psi d \theta_{b} d \theta_{c} \\
& \Delta \lambda=r \\
& r \in(0, \infty) \\
& w \in(-\infty, \infty) \\
& \theta \in[0, \pi] \\
& \psi \in[0, \pi / 2] \\
& \theta_{b} \in[0,2 \pi] \\
& \theta_{c} \in[0,2 \pi]
\end{aligned}
$$

Hence we can write (where C is the normalising constant for the GSE)

$$
\begin{aligned}
p_{\mathrm{sp}}(s) & =\langle\delta(s-\Delta \lambda / \bar{s})\rangle \\
& =\frac{1}{C} \int_{\mathbb{H}^{2}} e^{-n \operatorname{tr} H^{2}} \delta(s-\Delta \lambda / \bar{s}) d[H] \\
& =\frac{1}{C} \int_{\mathbb{H}^{2}} e^{-4\left(2 a^{2}+2 d^{2}+4 b b^{*}+4 c c^{*}\right)} \delta(s-\Delta \lambda / \bar{s}) d[H] \\
& =\frac{1}{C} \int_{D} e^{-4\left(w^{2}+x^{2}+y^{2}+z^{2}\right)} \delta(s-\Delta \lambda / \bar{s}) d[H] \\
& =\frac{1}{32 C} \int_{D} r^{4} \sin ^{3} \theta \sin \psi \cos \psi e^{-4\left(\bar{S}^{2}+r^{2}\right)} \delta(s-r / \bar{s}) d \bar{S} d r d \theta d \psi d \theta_{b} d \theta_{c} \\
& =\frac{1}{32 C} \int_{0}^{2 \pi} \int_{0}^{2 \pi} d \theta_{b} d \theta_{c} \int_{-\infty}^{\infty} e^{-4 \bar{S}^{2}} d \bar{S} \int_{0}^{\pi / 2} \sin \psi \cos \psi d \psi \int_{0}^{\pi} \sin ^{3} \theta d \theta \int_{0}^{\infty} r^{4} e^{-4 r^{2}} \delta(s-r / \bar{s}) d r \\
& =\frac{1}{32 C}(2 \pi)^{2}\left(\frac{\sqrt{\pi}}{2}\right)\left(\frac{1}{2}\right)\left(\frac{4}{3}\right)\left(\bar{s}^{5} s^{4} e^{-4 \bar{s}^{2} s^{2}}\right) \\
& =D \bar{s}^{5} s^{4} e^{-4 \bar{s}^{2} s^{2}}
\end{aligned}
$$

We then use the two facts that

$$
\begin{aligned}
& \int_{-0}^{\infty} p_{\mathrm{sp}}(s) d s=1 \quad\langle S\rangle=\int_{0}^{\infty} s p_{\mathrm{sp}}(s) d s=1 \\
& \Longrightarrow D \bar{s}^{5} \frac{3 \sqrt{\pi}}{256 \bar{s}^{5}}=1 \\
& \Longrightarrow D \bar{s}^{5} \frac{1}{64 \bar{s}^{6}}=1 \\
& \therefore D=\frac{2^{6}}{\Gamma(5 / 2)} \\
& \Longrightarrow \bar{s}=\frac{1}{\Gamma(5 / 2)}
\end{aligned}
$$

Combining all of this together, and noticing that $\Gamma(3)=2$, especially noticing the factor of 4 in the exponent, we arrive at the beautiful equation of the level spacing distribution for the 4×4 GSE matrix H, namely

$$
p_{\mathrm{sp}}(s)=2 \frac{\Gamma(3)^{5}}{\Gamma(5 / 2)^{6}} s^{4} \exp \left[-\left(\frac{\Gamma(3)}{\Gamma(5 / 2)}\right)^{2} s^{2}\right]
$$

