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Q1. Harmonic functions on the punctured disc

Let u be a harmonic function, so ∆u = 0, on the punctured unit disc

Ω0 = {x ∈ R2 | 0 < |x| < 1} .

Part a)

Suppose u is continuous at the origin. Then we will show that u is harmonic across the
unit disc Ω = {x ∈ R2 | |x| < 1}. To do this we will show that u is weakly harmonic on Ω.
Then by Theorem 15.1, this will imply that it is harmonic on all of Ω, without any need
to redefine any points due to the continuity of u.

Let ψ ∈ C∞0 (Ω) be an arbitrary compactly supported smooth function. We want to
show 〈u,∆ψ〉 = 0. Since u is harmonic on Ω0, it is weakly harmonic on Ω0 by a simple
application of integration by parts. So, for any ψ0 ∈ C∞0 (Ω0) we have 〈u,∆ψ0〉 = 0. This
suggests our task becomes finding a function Fε(|x|) such that:

1. ψ(1− Fε) ∈ C∞0 (Ω0) and;

2. limε→0 ∆(ψFε) = 0 ,

to then write

〈u,∆ψ〉 = 〈u,∆(ψ(1− fε))〉+ 〈u,∆(ψfε)〉 .

If we find such a function, then the first term will be 0 since u is weakly harmonic, and
the second term will go to 0 in the limit, implying 〈u,∆ψ〉 = 0.

Let us craft a function that is 1 locally near the origin and harmonic outside. Recall
that the fundamental radial solution to the Laplace equation is k log ‖x‖. This suggests
we might write

fε(x) =

{
1 if ‖x‖ < e−

1
ε

−ε log ‖x‖ if ‖x‖ > e−
1
ε

.

We see that fε(x) is continuous, but it is not differentiable, let alone smooth, at ‖x‖ = e−
1
ε .

This suggests we should mollify fε(x). Let δ < min(e−
1
ε , 1− e−

1
ε ), then we may define

Fε,δ(x) = (fε ∗Kδ)(x)
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where Kδ(x) is the approximation to the identity from Lecture 13. Due to our bound on
δ, we have that

∆Fε,δ(x) =


0 if x < e−

1
ε − δ

∆
∫
Rd fε(y)Kδ(x− y) dx if e−

1
ε − δ < x < e−

1
ε + δ

0 if e−
1
ε + δ < x < 1

.

Unfortunately, I wasn’t able to show that the inner term went to 0 as ε → 0 since it
appears ∆Kδ gets very large for small δ. However, I believe this is probably the right way
of approaching the question.

For any ψ ∈ C∞0 (Ω) we can write

∆(ψFε,δ) = ψ∆Fε,δ + 2∇ψ · ∇Fε,δ + Fε,δ∆ψ .

Supposing one could show what was discussed above, the first term will go to 0 as ε→ 0.
For the third term we have

lim
ε→0

∫
Ω
uFε,δ∆ψ dx =

∫
Ω
u(lim
ε→0

Fε,δ)∆ψ dx = 0

where the first equality follows from a simple application of the dominated convergence
theorem since Fε,δ is bounded, and the second equality since limε→0 Fε,δ = 0 by definition.

For the second term with the gradients we have

∂

∂xj
Fε,δ =


0 if x < e−

1
ε − δ

∂
∂xj

∫
Rd fε(y)Kδ(x− y) dx if e−

1
ε − δ < x < e−

1
ε + δ

− εxj
‖x‖2 if e−

1
ε + δ < x < 1

.

Taking the limit as ε→ 0 gives 0 for the bottom term, but once again the mollification is
tricky! Unfortunately, I have no answers here.

As a final note, since 1− Fε,δ = 0 close to the origin, we have that ψ(1− Fε,δ) ∈ C∞0 (Ω0)
for Property 1) mentioned above. As per our initial discussion, putting all of this together
gives the final result that 〈u,∆ψ〉 → 0, thus showing u is weakly harmonic on the whole
disc.

Part b)

Recall the Dirichlet problem for our domain: given the bounded open set Ω0 ⊂ R2 and a
continuous f on the boundary ∂Ω0, find a solution to

∆u = 0 for x ∈ Ω0 , u = f for x ∈ ∂Ω0 . (1.1)

Since Ω0 is the punctured disc, we have

∂Ω0 = ∂B(0, 1) ∪ {0} .

Suppose we defined a continuous function

f(x) =

{
0 if x ∈ ∂B(0, 1)

1 if x = 0
.
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We note here that a function on a disconnected domain,
⋃
α U

α of disjoint open sets Uα

is continuous if it is continuous on each Uα individually, suggesting the sorts of domains
for which the Dirichlet problem may fail to have a solution. By Lecture 4 we know that
the solution to (1.1) on the disc Ω is given by

u(r, θ) = (f ∗ Pr)(θ) ,

where Pr is the Poisson kernel, for any 0 ≤ r < 1. Thus u(0, θ) = 0 since f = 0 on ∂B(0, 1).
Therefore, for the solution on the punctured disc Ω0 we must have limr→0 u = 0. But this
contradicts with the choice of f(0) = 1, thus there is no solution to the Dirichlet problem
on the punctured disc. This counterexample shows that in general a solution need not
exist if the domain and boundary values don’t obey nice properties.

Q2. Estimates for unbounded domains

Let L =
∑
|α|≤n aα

(
∂
∂x

)α
be a constant coefficient partial differential equation operator.

Recall then that L has a characteristic polynomial given by P (ξ) =
∑
|α|≤n aα(2πiξ)α such

that L̂u(ξ) = P (ξ)û(ξ). Our goal is to show that the inequality

‖u‖L2(Ω) ≤ C‖L(u)‖L2(Ω)

holds for open sets Ω ⊆ Rd that are unbounded. Recall that Plancherel’s theorem gives

us that ‖u‖L2(Ω) = ‖û‖L2(Rd) and ‖L(u)‖L2(Ω) = ‖L̂(u)‖L2(Rd). This reduces the inequality
to showing

‖u‖L2(Ω) ≤ ‖P (ξ)û(ξ)‖L2(Rd) .

Part a)

Let d ≥ 2. We first suppose that our unbounded domain is given by

Ω = {x ∈ Rd |x1 ∈ (−M,M)} .

Let f(x) be a function on Ω. Consider the Fourier transform of f given by

f̂(ξ) =

∫
Ω
f(x)e−2πix·ξ dx

for ξ ∈ Rd. Let us extend f̂(ξ) into the whole complex plane (in the first coordinate) by
writing

f̂(ξ + iη) = f̂(ξ1 + iη1, ξ2, . . . , ξd) ,

which is the Fourier transform of the function

f(x)e−2πix1(η1i) = f(x)e2πx1η1

by Proposition 7.1.
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Let x′, ξ′,Ω′ denote the respective objects for the components 2, . . . , d. Then by Plancherel’s
theorem we have ∫

Rd
|f̂(ξ + iη)|2 dξ =

∫
Ω

∣∣∣f(x)e2πx1η1
∣∣∣2 dx (2.1)

=

∫
Ω′

∫ M

−M
|f(x)|2e4πx1η1 dx1 dx′

≤
∫

Ω′

∫ M

−M
|f(x)|2e4πM |η1| dx1 dx′

= e4πM |η1|
∫

Ω′

∫ M

−M
|f(x)|2 dx1 dx′

= C‖f‖L2(Ω) ,

where the third inequality follows from e4πx1η1 ≤ e4πM |η1| for all x ∈ (−M,M), and taking
C = e4πM |η1|. If we let f(x) = (Lu)(x) (which is well defined on Ω) with f̂(ξ) = P (ξ)û(ξ),
our new goal becomes showing that the left hand side of (2.1) is an upper bound on
‖û(x)‖L2(Rd).

Given the characteristic polynomial P (ξ) of degree n we can write P = Pn +P ′ where Pn
is a homogeneous polynomial of degree n and P ′ has degree less than n. The idea then
is to find an orthogonal transformation O such that we can write a new coordinate axis
ζ = O(ξ) where Pn ∝ ζn. I thought about this quite a lot, but can’t quite say for certain
that such an orthogonal transformation always exists.

• The case where Pn(ξ) ∝ ξn is trivial - we can always do this.

• My instinct is that the case where Pn =
∑d

i=1 biξ
n
i for some coefficients bi ∈ C, we

can set ζ1 =
∑d

i=1 biξi to give Pn(ζ1) = b′iζ
n
1 for some coefficients b′i ∈ C. For example

we have Pn = ∂2
ξ1

+ ∂2
ξ2

= ∂2
ζ1

when ζ1 = ξ1 + ξ2. We can certainly always pick an

orthogonal basis by applying Gram-Schmidt to the initial choice ζ1 =
∑d

i=1 biξi,
however I am not certain that this always reduces Pn to be in terms of ζ1 only, and
exactly how this generalises to n > 2 with repeated applications of the Jacobian.

• The case where there are mixed terms, e.g. ξ1ξ2ξ
2
3 in Pn(ξ), I am quite unconvinced

that an orthogonal transformation always exists to get the desired form. I am either
missing something very obvious, or there is some deep algebraic geometry going on
here!

Let us now proceed supposing that we have found such an O, meaning we can write
f̂(ξ) = P (ξ)û(ξ) = P (ζ1, ζ

′)û(ζ1, ζ
′) with no mixed ζ terms. Note here that the integral in

(2.1) is left unchanged under this orthogonal transformation since | detO| = 1, meaning the
Lebesgue measure is invariant under orthogonal transformations. In particular, this means
we can denote a holomorphic function F (z) = û(ξ+z) and a polynomial p(z) = P (ζ1+z, ζ ′)
and apply Lemma 13.4. This gives

1

2π

∫ 2π

0
|p(eiθ)F (eiθ)|2 dθ =

1

2π

∫ 2π

0
|P (ζ1 + eiθ)F (ζ1 + eiθ)|2 dθ ≥ |F (0)|2 = |û(ξ)|2

(2.2)

In the left hand side of (2.1) we can use the translation invariance of the integral over Rd
to write ξ 7→ ξ + cos θ. Applying (2.2) to (2.1) and putting all of this together gives the
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desired result

C‖Lu‖L2(Ω) =

∫
Rd
|f̂(ξ + iη)|2 dξ ≥

∫
Rd
|û(ξ)|2 dξ = ‖û(x)‖L2(Rd) = ‖u‖L2(Ω) .

Thus we see that if, after a potential change in coordinates via an orthogonal transfor-
mation, at least one component has a bounded domain, the bound in (2.1) will still hold.
Thus the rest of the argument will hold if this condition is met.

Part b)

We now want to show that ‖u‖L2(Rd) ≤ C‖L(u)‖L2(Rd) for all u ∈ C∞0 (Rd) if and only if

|P (ξ)| > c > 0 for all ξ ∈ Rd. One direction is simple: suppose |P (ξ)| > c > 0, then by
applying Plancherel’s theorem a few times∫

Rd
|(Lu)(x)|2 dx =

∫
Rd
|P (ξ)û(ξ)|2 dξ ≥ c2

∫
Rd
|û(ξ)|2 dξ = c2‖u‖L2(Rd) .

For the opposite direction... I don’t have much. The proof will start as supposing a con-
tradiction, which is to say that P (ξ) has a root over Rd. My idea was to find a specific û
for which it fails given we can factorise P (ξ) = (ξ − ξ0)Q(ξ) for Q(ξ) degree n − 1. The
problem is, the easiest û to find is something like 1(ξ ∈ [−1, 1]d), but this results in a
non-compactly supported function u when taking the inverse Fourier transform.

It is truly curious to me that P having a root results in this estimate. I’ll be interested to
see why!
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