Partial Differential Equations Assignment 2

Liam Carroll - 830916
Due Date: $17^{\text {th }}$ September 2021

Q1. Finite speed of propagation

Let $B\left(x_{0}, r_{0}\right)$ be the closed ball of radius r_{0} centred at $x_{0} \in \mathbb{R}^{d}$. Consider the domain of dependence,

$$
\mathcal{D}\left(B\left(x_{0}, r_{0}\right)\right)=\left\{(t, x): 0 \leq t \leq r_{0},\left|x-x_{0}\right| \leq r_{0}-t\right\} .
$$

Figure 1: Note that $\mathcal{D}\left(B\left(x_{0}, r_{0}\right)\right)$ is inclusive of everything inside the red cone (it is closed).
We will show that if $u(t, x)$ is a solution of the wave equation with zero boundary conditions,

$$
\frac{\partial^{2} u}{\partial t^{2}}=\Delta u, \quad u(0, x)=\partial_{t} u(0, x)=0, \quad \text { for all } x \in B\left(x_{0}, r_{0}\right),
$$

then $u(t, x)=0$ for all $(t, x) \in \mathcal{D}\left(B\left(x_{0}, r_{0}\right)\right)$, where $x \in \mathbb{R}^{d}$.

Part a)

Let

$$
B_{t}\left(x_{0}, r_{0}\right)=\left\{x:\left|x-x_{0}\right| \leq r_{0}-t\right\}
$$

be $\mathcal{D}\left(B\left(x_{0}, r_{0}\right)\right)$ for a fixed value t. For sanity, note that $\left\{x_{0}\right\}=B_{r_{0}} \subset B_{0}\left(x_{0}, r_{0}\right)$. Consider the energy integral

$$
E(t)=\int_{B_{t}\left(x_{0}, r_{0}\right)} e(t, x) d x, \quad \text { where } \quad e(t, x)=\frac{1}{2}\left(\left(\partial_{t} u\right)^{2}+|\nabla u|^{2}\right)(t, x) .
$$

Firstly, recall the coarea formula on the sphere (Stein, Shakarchi Fourier Analysis pg293) which states that for any continuous and integrable function $f(x)$ we may write for any ball $\mathcal{B}\left(x_{0}, R\right)$ of radius R centred at x_{0}

$$
\int_{\mathcal{B}\left(x_{0}, R\right)} f(x) \mathrm{d} x=\int_{0}^{R}\left(\int_{\partial \mathcal{B}\left(x_{0}, R\right)} f(x) \mathrm{d} \sigma\right) \mathrm{d} r .
$$

In essence, this line is where the geometry of the light cone is exploited. It just so happens that the sphere obeys this relation - most (maybe all?) other domains of integration would give a Jacobian that does not cancel out with the spherical measure $\mathrm{d} \sigma(\gamma)$. Let us write $B_{t}\left(x_{0}, r_{0}\right)=\mathcal{B}\left(x_{0}, r_{0}-t\right)$ so as to not confuse ourselves. Then using the coarea formula,

$$
E(t)=\int_{0}^{r_{0}-t}\left(\int_{\partial \mathcal{B}\left(x_{0}, r\right)} e(t, x) \mathrm{d} \sigma\right) \mathrm{d} r .
$$

Let $f(x, r)$ denote the inner integral in the above equation. We may then appeal to the Leibniz integral rule (or as Volker puts it, merely the fundamental theorem of calculus) to write

$$
\begin{aligned}
E^{\prime}(t) & =\int_{0}^{r_{0}-t} \frac{\partial}{\partial t} f(x, r) \mathrm{d} r+f\left(x, r_{0}-t\right) \frac{\partial}{\partial t}\left(r_{0}-t\right) \\
& =\int_{0}^{r_{0}-t}\left(\frac{\partial}{\partial t} \int_{\partial \mathcal{B}\left(x_{0}, r\right)} e(t, x) \mathrm{d} \sigma\right) \mathrm{d} r-\int_{\partial \mathcal{B}\left(x_{0}, r_{0}-t\right)} e(t, x) \mathrm{d} \sigma \\
& =\int_{0}^{r_{0}-t}\left(\int_{\partial \mathcal{B}\left(x_{0}, r\right)} \frac{\partial}{\partial t} e(t, x) \mathrm{d} \sigma\right) \mathrm{d} r-\int_{\partial \mathcal{B}\left(x_{0}, r_{0}-t\right)} e(t, x) \mathrm{d} \sigma \\
& =\int_{B_{t}\left(x_{0}, r_{0}\right)} \partial_{t} e(t, x) \mathrm{d} x-\int_{\partial B_{t}\left(x_{0}, r_{0}\right)} e(t, x) \mathrm{d} \sigma,
\end{aligned}
$$

where we may take the ∂_{t} inside the integral since $e(t, x)$ is assumed to be continuous and integrable, and the bounds are independent of t.

Part b)

A simple calculation using the chain rule shows

$$
\partial_{t} e(t, x)=\left(\frac{\partial u}{\partial t}\right)\left(\frac{\partial^{2} u}{\partial t^{2}}\right)+\sum_{i=1}^{d}\left(\frac{\partial}{\partial x_{i}} \frac{\partial u}{\partial t}\right)\left(\frac{\partial u}{\partial x_{i}}\right)=\left(\partial_{t} u\right)(\Delta u)+\left(\nabla \partial_{t} u\right) \cdot(\nabla u),
$$

where the last equality follows from the fact that u satisfies the wave equation. Recall the identity $\nabla \cdot(f \mathbf{F})=f \nabla \cdot \mathbf{F}+(\nabla f) \cdot \mathbf{F}$, which we can use to write

$$
\partial_{t} e(t, x)=\nabla \cdot\left(\partial_{t} u \nabla u\right) .
$$

Thus, using the divergence theorem we have

$$
\int_{B_{t}\left(x_{0}, r_{0}\right)} \partial_{t} e(t, x) \mathrm{d} x=\int_{B_{t}\left(x_{0}, r_{0}\right)} \nabla \cdot\left(\partial_{t} u \nabla u\right) \mathrm{d} x=\int_{\partial B_{t}\left(x_{0}, r_{0}\right)}\left(\partial_{t} u \nabla u\right) \cdot n \mathrm{~d} \sigma,
$$

where n is the unit normal vector to the boundary.

Part c)

We have now shown that

$$
E^{\prime}(t)=\int_{\partial B_{t}\left(x_{0}, r_{0}\right)}\left(\left(\partial_{t} u \nabla u\right) \cdot n-e(t, x)\right) \mathrm{d} \sigma
$$

Using the Cauchy-Schwarz inequality, $a \cdot b \leq|a||b|$, we have

$$
\begin{aligned}
\left(\partial_{t} u \nabla u\right) \cdot n-e(t, x) & \leq\left|\partial_{t} u \nabla u\right||n|-e(t, x) \\
& =\left|\partial_{t} u\right||\nabla u|-\frac{1}{2}\left|\partial_{t} u\right|^{2}-\frac{1}{2}|\nabla u|^{2} \\
& =-\frac{1}{2}\left(\left|\partial_{t} u\right|-|\nabla u|\right)^{2} \leq 0 .
\end{aligned}
$$

Since $E^{\prime}(t)$ is an integral over a non-positive function, we thus have $E^{\prime}(t) \leq 0$.

To finally see uniqueness on $\mathcal{D}\left(B\left(x_{0}, r_{0}\right)\right)$, note that since $u(0, x)=0$ everywhere on $B\left(x_{0}, r_{0}\right)$ we also must have $\partial_{x_{i}} u(0, x)=0$. Combining this with $\partial_{t} u(0, x)=0$ we thus have $e(0, x)=0$ and so $E(0)=0$. But since $e(t, x) \geq 0$, we must have $E(t) \geq 0$, but since we have shown that $E^{\prime}(t) \leq 0$ for all t we necessarily have $E(t)=0$ for all t. This implies $e(t, x)=0$ everywhere, thus all partials must be 0 , implying $u(t, x)$ is necessarily a constant. But since $u(0, x)=0$, we finally conclude that $u(t, x)=0$ everywhere as required.

Q2. Weak convergence in Hilbert space

Let \mathcal{H} be an infinite-dimensional Hilbert space, for which we know that the unit ball is not compact in \mathcal{H}. However, we can show a kind of weak compactness. Let $\left\{f_{n}\right\}$ be a sequence in \mathcal{H} on the unit ball, so $\left\|f_{n}\right\|=1$ for all n. We will show that there exists an $f \in \mathcal{H}$ and a subsequence $\left\{f_{n_{k}}\right\}$ such that for all $g \in \mathcal{H}$ we have weak convergence, $\lim _{k \rightarrow \infty}\left(f_{n_{k}}, g\right)=(f, g)$.

Let $\left\{e_{j}\right\}$ be an orthonormal basis for \mathcal{H}, where $e_{j}=(0, \ldots, 0,1,0, \ldots, 0)$ such that the 1 occurs in the j entry as usual. Define a sequence by $x_{n}^{1}=\left\{\left(f_{n}, e_{1}\right)\right\}_{n=1}^{\infty} \subseteq \mathbb{C}$. Since f_{n} is on the unit ball for each n, we have by Cauchy-Schwarz that $\left|\left(f_{n}, e_{1}\right)\right| \leq\left\|f_{n}\right\|\left\|e_{1}\right\|=1$. This implies that x_{n}^{1} is a sequence in the compact ball $B(0,1) \subseteq \mathbb{C}$, and thus has a convergent subsequence which we may denote $x_{n_{j}}^{1}=\left\{\left(f_{n, j}, e_{1}\right)\right\}_{j=1}^{\infty}$, where $x_{n_{j}}^{1} \rightarrow X^{1}$ for some $X^{1} \in B(0,1) \subseteq \mathbb{C}$.

Then consider the sequence $x_{n_{j}}^{2}=\left\{\left(f_{n_{j}}, e_{2}\right)\right\}_{j=1}^{\infty}$. By the same argument, this also has a convergent subsequence $x_{n_{j_{i}}}^{2} \rightarrow X^{2}$ as a limit in i. Moreover, $\left\{f_{n_{j_{i}}}\right\}_{i=1}^{\infty}$ is a subsequence of $\left\{f_{n_{j}}\right\}_{j=1}^{\infty}$ in \mathcal{H}, and since subsequences must converge to the same element as the sequence, we have $x_{n_{j_{i}}}^{1} \rightarrow X^{1}$.

Repeating this process indefinitely, we can construct an infinite matrix of rows $\left\{f_{k, i}\right\}_{i=1}^{\infty}$ such that:

- f_{k} is a subsequence of each previous row f_{1}, \ldots, f_{k-1},
- $\lim _{i \rightarrow \infty}\left(f_{k, i}, e_{k}\right)=X^{k}$,
- and $\lim _{i \rightarrow \infty}\left(f_{k+m, i}, e_{k}\right)=X^{k}$ for all $m \geq 0$

If we then define the diagonal subsequence $f_{n, n}$ of f_{n}, then for any fixed e_{k} we have $\lim _{n \rightarrow \infty}\left(f_{n, n}, e_{k}\right)=X^{k}$ by construction. In other words, for any basis element e_{k}, the subsequence $\left\{\left(f_{n, n}, e_{k}\right)\right\}_{n=1}^{\infty}$ converges!

Let $g \in \mathcal{H}$ be an arbitrary element, which we may write as $g=\sum_{k=1}^{\infty} g_{k} e_{k}$ where $g_{k}=\left(g, e_{k}\right)$. Let $S_{K}(g)=\sum_{k=1}^{K} g_{k} e_{k}$. We can show that the sequence $\left(f_{n n}, g\right)$ is Cauchy. Let $\varepsilon>0$ be fixed. For any $n>m$ we can estimate

$$
\begin{aligned}
\left|\left(f_{n n}, g\right)-\left(f_{m m}, g\right)\right| \leq & \left|\left(f_{n n}, g\right)-\left(f_{n n}, S_{K}(g)\right)\right|+\left|\left(f_{n n}, S_{K}(g)\right)-\left(f_{m m}, S_{K}(g)\right)\right| \\
& +\left|\left(f_{m m}, g\right)-\left(f_{m m}, S_{K}(g)\right)\right| \\
= & \left|\left(f_{n n}, g-S_{K}(g)\right)\right|+\left|\left(f_{n n}, S_{K}(g)\right)-\left(f_{m m}, S_{K}(g)\right)\right|+\left|\left(f_{m m}, g-S_{K}(g)\right)\right| \\
\leq \leq & \left|f_{n n}\right|\left|g-S_{K}(g)\right|+\left|\left(f_{n n}, S_{K}(g)\right)-\left(f_{m m}, S_{K}(g)\right)\right|+\left|f_{m m}\right|\left|g-S_{K}(g)\right|
\end{aligned}
$$

Since $S_{K}(g) \rightarrow g$, there is some K such that the first and last terms are less than $\varepsilon / 2$. For the second term, taking $N=K$ we have

$$
\left|\left(f_{n n}, S_{K}(g)\right)-\left(f_{m m}, S_{K}(g)\right)\right|=\left|\sum_{k=1}^{K} g_{k}\left[\left(f_{n n}, e_{k}\right)-\left(f_{m m}, e_{k}\right)\right]\right|=\left|\sum_{k=1}^{K} g_{k}\left[X^{k}-X^{k}\right]\right|=0
$$

Thus for all $n, m \geq K$ we have $\left|\left(f_{n n}, g\right)-\left(f_{m m}, g\right)\right|<\varepsilon$, showing that $\left(f_{n n}, g\right)$ is Cauchy. Finally, by the Riesz representation theorem, we may define

$$
\ell_{n}: \mathcal{H} \rightarrow \mathbb{C}, \quad \ell_{n}(g)=\left(f_{n, n}, g\right)
$$

Then since the dual \mathcal{H}^{*} is also a Hilbert space, and ℓ_{n} is Cauchy, we have that

$$
\lim _{n \rightarrow \infty}=\ell_{n}=\ell \in \mathcal{H}^{*}
$$

for some ℓ. By reversing Riesz we thus have some $f \in \mathcal{H}$ such that $\ell(g)=(f, g)$ for all $g \in \mathcal{H}$. This shows that f_{n} converges weakly to f.

