
Partial Differential Equations Assignment 2

Liam Carroll - 830916

Due Date: 17th September 2021

Q1. Finite speed of propagation

Let B(x0, r0) be the closed ball of radius r0 centred at x0 ∈ Rd. Consider the domain of
dependence,

D(B(x0, r0)) =
{

(t, x) : 0 ≤ t ≤ r0 , |x− x0| ≤ r0 − t
}
.

Figure 1: Note that D(B(x0, r0)) is inclusive of everything inside the red cone (it is closed).

We will show that if u(t, x) is a solution of the wave equation with zero boundary condi-
tions,

∂2u

∂t2
= ∆u , u(0, x) = ∂tu(0, x) = 0 , for all x ∈ B(x0, r0) ,

then u(t, x) = 0 for all (t, x) ∈ D(B(x0, r0)), where x ∈ Rd.

Part a)

Let

Bt(x0, r0) =
{
x : |x− x0| ≤ r0 − t

}
beD(B(x0, r0)) for a fixed value t. For sanity, note that {x0} = Br0 ⊂ B0(x0, r0). Consider
the energy integral

E(t) =

∫
Bt(x0,r0)

e(t, x)dx , where e(t, x) =
1

2

(
(∂tu)2 + |∇u|2

)
(t, x) .
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Firstly, recall the coarea formula on the sphere (Stein, Shakarchi Fourier Analysis pg293)
which states that for any continuous and integrable function f(x) we may write for any
ball B(x0, R) of radius R centred at x0∫

B(x0,R)
f(x) dx =

∫ R

0

(∫
∂B(x0,R)

f(x) dσ

)
dr .

In essence, this line is where the geometry of the light cone is exploited. It just so happens
that the sphere obeys this relation - most (maybe all?) other domains of integration would
give a Jacobian that does not cancel out with the spherical measure dσ(γ). Let us write
Bt(x0, r0) = B(x0, r0 − t) so as to not confuse ourselves. Then using the coarea formula,

E(t) =

∫ r0−t

0

(∫
∂B(x0,r)

e(t, x) dσ

)
dr .

Let f(x, r) denote the inner integral in the above equation. We may then appeal to the
Leibniz integral rule (or as Volker puts it, merely the fundamental theorem of calculus) to
write

E′(t) =

∫ r0−t

0

∂

∂t
f(x, r) dr + f(x, r0 − t)

∂

∂t
(r0 − t)

=

∫ r0−t

0

(
∂

∂t

∫
∂B(x0,r)

e(t, x) dσ

)
dr −

∫
∂B(x0,r0−t)

e(t, x) dσ

=

∫ r0−t

0

(∫
∂B(x0,r)

∂

∂t
e(t, x) dσ

)
dr −

∫
∂B(x0,r0−t)

e(t, x) dσ

=

∫
Bt(x0,r0)

∂te(t, x) dx−
∫
∂Bt(x0,r0)

e(t, x) dσ ,

where we may take the ∂t inside the integral since e(t, x) is assumed to be continuous and
integrable, and the bounds are independent of t.

Part b)

A simple calculation using the chain rule shows

∂te(t, x) =

(
∂u

∂t

)(
∂2u

∂t2

)
+

d∑
i=1

(
∂

∂xi

∂u

∂t

)(
∂u

∂xi

)
= (∂tu)(∆u) + (∇∂tu) · (∇u) ,

where the last equality follows from the fact that u satisfies the wave equation. Recall the
identity ∇ · (fF) = f∇ · F + (∇f) · F, which we can use to write

∂te(t, x) = ∇ · (∂tu∇u) .

Thus, using the divergence theorem we have∫
Bt(x0,r0)

∂te(t, x) dx =

∫
Bt(x0,r0)

∇ · (∂tu∇u) dx =

∫
∂Bt(x0,r0)

(∂tu∇u) · n dσ ,

where n is the unit normal vector to the boundary.
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Part c)

We have now shown that

E′(t) =

∫
∂Bt(x0,r0)

(
(∂tu∇u) · n− e(t, x)

)
dσ .

Using the Cauchy-Schwarz inequality, a · b ≤ |a||b|, we have

(∂tu∇u) · n− e(t, x) ≤ |∂tu∇u||n| − e(t, x)

= |∂tu||∇u| −
1

2
|∂tu|2 −

1

2
|∇u|2

= −1

2
(|∂tu| − |∇u|)2 ≤ 0 .

Since E′(t) is an integral over a non-positive function, we thus have E′(t) ≤ 0.

To finally see uniqueness on D(B(x0, r0)), note that since u(0, x) = 0 everywhere on
B(x0, r0) we also must have ∂xiu(0, x) = 0. Combining this with ∂tu(0, x) = 0 we thus
have e(0, x) = 0 and so E(0) = 0. But since e(t, x) ≥ 0, we must have E(t) ≥ 0, but
since we have shown that E′(t) ≤ 0 for all t we necessarily have E(t) = 0 for all t. This
implies e(t, x) = 0 everywhere, thus all partials must be 0, implying u(t, x) is necessarily
a constant. But since u(0, x) = 0, we finally conclude that u(t, x) = 0 everywhere as
required.

Q2. Weak convergence in Hilbert space

Let H be an infinite-dimensional Hilbert space, for which we know that the unit ball is
not compact in H. However, we can show a kind of weak compactness. Let {fn} be a
sequence in H on the unit ball, so ‖fn‖ = 1 for all n. We will show that there exists
an f ∈ H and a subsequence {fnk

} such that for all g ∈ H we have weak convergence,
limk→∞(fnk

, g) = (f, g).

Let {ej} be an orthonormal basis for H, where ej = (0, . . . , 0, 1, 0, . . . , 0) such that the 1
occurs in the j entry as usual. Define a sequence by x1n = {(fn, e1)}∞n=1 ⊆ C. Since fn is
on the unit ball for each n, we have by Cauchy-Schwarz that |(fn, e1)| ≤ ‖fn‖‖e1‖ = 1.
This implies that x1n is a sequence in the compact ball B(0, 1) ⊆ C, and thus has a conver-
gent subsequence which we may denote x1nj

= {(fn,j , e1)}∞j=1, where x1nj
→ X1 for some

X1 ∈ B(0, 1) ⊆ C.

Then consider the sequence x2nj
= {(fnj , e2)}∞j=1. By the same argument, this also has a

convergent subsequence x2nji
→ X2 as a limit in i. Moreover, {fnji

}∞i=1 is a subsequence of

{fnj}∞j=1 in H, and since subsequences must converge to the same element as the sequence,

we have x1nji
→ X1.

Repeating this process indefinitely, we can construct an infinite matrix of rows {fk,i}∞i=1

such that:

• fk is a subsequence of each previous row f1, . . . , fk−1,

• limi→∞(fk,i, ek) = Xk,

• and limi→∞(fk+m,i, ek) = Xk for all m ≥ 0
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If we then define the diagonal subsequence fn,n of fn, then for any fixed ek we have
limn→∞(fn,n, ek) = Xk by construction. In other words, for any basis element ek, the
subsequence {(fn,n, ek)}∞n=1 converges!

Let g ∈ H be an arbitrary element, which we may write as g =
∑∞

k=1 gkek where

gk = (g, ek). Let SK(g) =
∑K

k=1 gkek. We can show that the sequence (fnn, g) is Cauchy.
Let ε > 0 be fixed. For any n > m we can estimate

|(fnn, g)− (fmm, g)| ≤ |(fnn, g)− (fnn, SK(g))|+ |(fnn, SK(g))− (fmm, SK(g))|
+ |(fmm, g)− (fmm, SK(g))|

= |(fnn, g − SK(g))|+ |(fnn, SK(g))− (fmm, SK(g))|+ |(fmm, g − SK(g))|
≤ |fnn||g − SK(g)|+ |(fnn, SK(g))− (fmm, SK(g))|+ |fmm||g − SK(g)|

Since SK(g)→ g, there is some K such that the first and last terms are less than ε/2. For
the second term, taking N = K we have

|(fnn, SK(g))− (fmm, SK(g))| =

∣∣∣∣∣∣
K∑
k=1

gk[(fnn, ek)− (fmm, ek)]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
K∑
k=1

gk[Xk −Xk]

∣∣∣∣∣∣ = 0 .

Thus for all n,m ≥ K we have |(fnn, g)− (fmm, g)| < ε, showing that (fnn, g) is Cauchy.
Finally, by the Riesz representation theorem, we may define

`n : H → C , `n(g) = (fn,n, g) .

Then since the dual H∗ is also a Hilbert space, and `n is Cauchy, we have that

lim
n→∞

= `n = ` ∈ H∗

for some `. By reversing Riesz we thus have some f ∈ H such that `(g) = (f, g) for all
g ∈ H. This shows that fn converges weakly to f .
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