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Due Date: 21st October 2020

Q1. Morphogenesis

We will consider the general reaction diffusion system in dimensionless form on 0 < x < π,
given by

∂u

∂t
=
∂2u

∂x2
+ γf(u, v) , (1.1)

∂v

∂t
= 10

∂2v

∂x2
+ γg(u, v) , (1.2)

with no flux boundary conditions

∂u

∂x
(0, t) = 0 ,

∂u

∂x
(π, t) = 0 , (1.3)

∂v

∂x
(0, t) = 0 ,

∂v

∂x
(π, t) = 0 . (1.4)

Here γ > 0 is a dimensionless bifurcation parameter describing the relative strength of the
diffusion terms compared to the interaction terms.

Let (u∗, v∗) be the spatially uniform steady state solution. The Jacobian matrix J of
the linearisation of the system about (u∗, v∗) is given by

J = γ

[
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

]
(u∗,v∗)

= γ

[
2 −4
4 −6

]
. (1.5)

Part a)

To show that (u∗, v∗) is stable in the absence of diffusion, we first calculate the eigenvalues
of J :

det

[
2γ − λ −4γ

4γ −6γ − λ

]
= (2γ − λ)(−6γ − λ)− (4γ)(−4γ) = (λ+ 2γ)2 = 0 ,

hence our eigenvalues are λ = −2γ . (1.6)

Since both (repeated) eigenvalues are negative, we see that (u∗, v∗) is a stable equilibrium
as per standard linear stability analysis.
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Part b)

We now investigate the scenario when diffusion is present, where we note that we have
diffusion constants of Du = 1 and Dv = 10. We start, as in J.D. Murray (Vol2 §2.3)
by linearising around the steady state (u∗, v∗) (i.e. considering a perturbation about the
steady state). In setting w = (u− u∗, v − v∗), we have

∂w

∂t
= γJw +D

∂2w

∂x2
where D =

[
1 0
0 10

]
. (1.7)

We can define W (x) = (u(x), v(x)) as the time independent solution to the spatial eigen-
value problem defined by

∂2W

∂x2
+ q2W = 0 (1.8)

with eigenvalues q. Our no flux boundary conditions at x = 0 and x = π then give us
that W (x) ∝ cos(qx), where we denote Wq as the eigenfunction corresponding to the qth
eigenvalue. Hence we can look for Fourier solutions of the form

w(x, t) =
∑
q

cqe
σtWq(x) . (1.9)

where cq are the Fourier coefficients (largely irrelevant in our analysis) and σ is the ex-
ponential eigenvalue, which Murray calls the temporal growth rate. Substituting this
equation into (1.7) and using the relation in (1.8), we have

σ
∑
q

cqe
σtWq(x) = γJ

∑
q

cqe
σtWq(x)−Dq2

∑
q

cqe
σtWq(x)

so (γJ − q2D − σ1)
∑
q

cqWq(x) = 0 .

for all eigenvalues q. We seek non-trivial solutions for Wq(x), hence we want to solve
det(γJ − q2D − σ1) = 0 for the eigenvalues σ, where we have

0 = det(γJ − q2D − σ1) = det

[
2γ − q2 − σ −4γ

4γ −6γ − 10q2 − σ

]
= σ2 + (11q2 + 4γ)σ + (10q4 − 14γq2 + 4γ2) . (1.10)

An elementary calculation using the quadratic formula shows that for any quadratic aσ2+
bσ+ c = 0 where a > 0 and b > 0 (which we have since q2, γ ≥ 0), there will be a positive
solution for σ as long as ac < 0. Identifying these terms with (1.10), we see that our
condition for instability of the qth node is

H(q2) := 4γ2 − 14γq2 + 10q4+ < 0 . (1.11)

We note that here we have defined q to be the eigenvalues associated with (1.8) which
yielded W (x) ∝ cos(qx). Our no flux boundary conditions then tell us that q = nπ

L for
n ∈ Z where L is the length of the domain, but in our case we have L = π, that is, we
have q = n ∈ Z. So when we talk about the nth node, this is precisely the qth node.
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Part c)

Solving for γ in H(q2) = 0 we get

γ =
1

8

(
14q2 ±

√
196q4 − 160q4

)
= q2 ,

5

2
q2 . (1.12)

Hence, since H(q2) is a positive quadratic in γ, we see that the condition on γ to ensure
the qth node is unstable is

γ ∈
(
q2,

5

2
q2
)
. (1.13)

Part d)

Suppose we have 0 < γ < 10. We can instead analyse H(q2) < 0 in terms of q2 now,
where a similar analysis shows that H(q2) = 0 when

q2 =
1

20

(
14γ ±

√
196γ2 − 160γ2

)
=

8

20
γ , γ . (1.14)

Hence, we have instability when H(q2) < 0 which yields q2 ∈ (25γ, γ), so (noting the
obvious negative symmetry in q) we have instability when

q ∈

(√
2γ

5
,
√
γ

)
. (1.15)

As can be seen in the graphs in part e), the modes q = 1, 2, 3 will be unstable for values of
γ in various subintervals in [0, 10]. Using (1.13), we see that these nodes will be unstable
when:

q = 1 : γ ∈ (1,
5

2
) ; q = 2 : γ ∈ (4, 10) ; q = 3 : γ ∈ (9,

45

2
) . (1.16)

In particular note that both q = 2 and q = 3 are unstable when γ ∈ (9, 10). Interestingly,
no nodes are unstable for γ ∈ (0, 1) or γ ∈ (52 , 4).

Part e)

Using this analysis, we can use a graph to analyse which nodes, and how many, are unsta-
ble for 0 < γ < 10 - this is shown in Figure 1.1. Note that we choose to depict this in the
(γ, q) plane instead of (γ, q2) plane simply as a matter of taste to keep the regions more
compact to draw.

Recall that if a node q is unstable then this corresponds to the existence of pattern.
Further, the higher the value of q, the higher the frequency of the pattern in the domain,
for example the shorter the width of a zebra’s stripes. When there are multiple competing
unstable nodes, it is assumed that the greatest q value will dominate the pattern formation.

If we extend our domain to γ ∈ (0, 1000), we get an even better picture of how many
nodes become unstable for a given γ value. It is clear that only the two γ intervals stated
in part d) and depicted in purple in Figure 1.1 give rise to no unstable nodes, as we can
clearly visually see that unstable nodes will exist for any γ > 4. Note that careful analysis
of the number of perfect squares in some linear region would yield a relationship between
the number of unstable nodes as a function of γ - we leave this as an exercise to the reader
if they are so inclined.
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Figure 1.1: Plot depicting the region of instability and the corresponding unstable nodes
q for different values of γ ∈ (0, 10).

Figure 1.2: Plot depicting the region of instability and the corresponding unstable nodes
q for different values of γ ∈ (0, 1000).
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Q2. 1D model in tissue engineering

Consider a region 0 ≤ x ≤ 1 covered with cells with density n(x, t). The cells need oxygen
to survive. Let c(x, t) denote the concentration of oxygen in the region. The equations
governing c(x, t) and n(x, t) can be written as

α
∂2c

∂x2
− nF (c) = 0 ,

∂n

∂t
= nF (c) , (2.1)

where α is a dimensionless diffusion parameter and F (c) is a function describing the oxygen
consumption by cells. The boundary and initial conditions are

c(0, t) = 1 ,
∂c

∂x
(1, t) = 0 , n(x, 0) = 1 . (2.2)

Note that we cannot set an initial condition for c nor a boundary condition for n. We
shall consider the case where F (c) is the Heaviside step function

F (c) =

{
1 if c > c∗

0 if c ≤ c∗
, (2.3)

where c∗ is a constant such that 0 < c∗ < 1. We will assume that α > 1/2.

Part a)

As usual, the Heaviside step function acts as a kind of switch. In the context of our
problem, we see that when the concentration of oxygen c is greater than some threshold c∗,
F (c) = 1 turns on, which corresponds to ∂n

∂t = n. This means that when the concentration
reaches c∗ in some region, the cells move to this region to consume said oxygen, which is
represented by the solution n(x, t) = N(x)et which shows that the density of cells increases
exponentially when c > c∗. When the concentration of oxygen is low, so F (c) is turned
off, n(x, t) will be constant in time, meaning the cells don’t move as there is no oxygen to
consume.

Part b)

Assume that for an initial time period the oxygen concentration is strictly c > c∗ every-
where - we can then solve for n(x, t) and c(x, t) for these early times. We first have

∂n

∂t
= n , so n(x, t) = N(x)et ,

and then using the condition n(x, 0) = 1, this yields N(x) = 1, hence n(x, t) = et.
Substituting this into the first equation gives

∂2c

∂x2
=

1

α
et , so

∂c

∂x
=

1

α
xet + C1(t) ,

and since we have ∂c
∂x(1, t) = 0, this gives C1(t) = − 1

αe
t so we have

∂c

∂x
=

1

α
xet − 1

α
et .

Performing integration one final time then gives us

c(x, t) =
1

2α
x2et − 1

α
xet + C0(t) ,
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and using c(0, t) = 1 we finally arrive at our early time solutions for c(x, t) and n(x, t),

c(x, t) =
1

2α
x2et − 1

α
xet + 1 and n(x, t) = et . (2.4)

We can then analyse c(x, 0) as a function of x ∈ [0, 1], where

c(x, 0) =
1

2α
x2 − 1

α
x+ 1 . (2.5)

Figure 2.1: Plot of c(x, 0) for x ∈ [0, 1].

A simple calculation shows that (supposing α
is a positive dimensionless parameter) this is
minimised at x = 1, the edge of the boundary.
Here we have a concentration of

c(1, 0) = 1− 1

2α
,

and so in order to ensure that c(x, 0) is pos-
itive for each x ∈ [0, 1], which is the only
biologically reasonable option, we must have
1− 1

2α > 0, so α > 1
2 as outlined in the ques-

tion. A small schematic can be seen in Figure
2.1.

Part c)

Suppose we have a critical oxygen level c∗ as outlined in the preamble, and a critical time
tc such that the oxygen falls to c∗ at tc, that is, c(1, tc) = c∗, hence

c(1, tc) =
1

2α
etc − 1

α
etc + 1 = c∗ .

A short calculation then gives us an expression for tc in terms of the fixed c∗ as

tc = log(2α(1− c∗)) . (2.6)

Part d)

For times t > tc there is a moving point X(t) where the oxygen concentration first reaches
c∗, i.e. there is an X(t) defined by

c(x, t) > c∗ for 0 < x < X(t), c(X(t), t) = c∗ . (2.7)

The region 0 < x < X(t) corresponds to c > c∗, hence F (c) = 1. By contrast, X(t) < x < 1
corresponds to c < c∗ hence F (c) = 0. Therefore our PDEs become

0 < x < X(t) : α
∂2c

∂x2
= n and

∂n

∂t
= n , (2.8)

X(t) < x < 1 : α
∂2c

∂x2
= 0 and

∂n

∂t
= 0 . (2.9)

The first condition c(0, t) = 1 remains unchanged, as does the second ∂c
∂x(1, t) = 0 although

it is now relevant to the region X(t) < x < 1. The third, n(x, 0) = 1, is now irrelevant
since we are away from t = 0. Since c(x, t) represents the concentration of oxygen and,
importantly, is diffusing, biologically we should ensure that c(x, t) is a smooth function
across the x = X(t) boundary. Since n(x, t) is not diffusing, we only need to ensure it is
continuous. Further, our solutions for both c and n should be continuous along the the
t = tc boundary. Putting all of this together, our new initial and boundary conditions are:
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0 < x < X(t) : c(0, t) = 1

X(t) < x < 1 : ∂c
∂x(1, t) = 0

Continuity of n n(X(t)−, t) = n(X(t)+, t)

Smoothness of c : c(X(t)−, t) = c(X(t)+, t) , ∂c
∂x(X(t)−, t) = ∂c

∂x(X(t)+, t)
Continuity across t = tc : c(x, t−c ) = c(x, t+c ) , n(x, t−c ) = n(x, t+c )

Part e)

We shall now solve these equations on the whole domain 0 ≤ x ≤ 1. For clarity, let
c1(x, t) and n1(x, t) denote the solutions (2.4) we found in part b) for t < tc, let c2(x, t)
and n2(x, t) for t > tc in 0 < x < X(t), and then let c3(x, t) and n3(x, t) for t > tc in
X(t) < x < 1.

We first solve for the second case. We immediately see that n2(x, t) = N2(x)et, and
since this must match n1(x, t) at t = tc, we have n2(x, tc) = N2(x)etc = etc = n1(x, tc)
and so N2(x) = 1, hence

n2(x, t) = et . (2.10)

Thus the solution for c2 will take the same form as in (2.4), namely

c2(x, t) =
1

2α
x2et +A2(t)x+B2(t) .

Using the c(0, t) = 1 condition, we have B2(t) = 1. We will return to A2(t) later.

Next, solving on X(t) < x < 1 yields

c3(x, t) = A3(t)x+B3(t) , and n3(x, t) = N3(x) .

Then ∂c
∂x(1, t) = 0 gives A3(t) = 0. We then match c1(x, t

−
c ) = c∗ = B3(t) = c3(x, t

+
c ), so

c3(x, t) = c∗ . (2.11)

We will deal with N3(x) later.

Returning to A2(t), we now see that we can use the smoothness at x = X(t) condition to
conclude

∂c2
∂x

(X(t), t) =
1

α
X(t)et +A2(t) = 0 =

∂c3
∂x

(X(t), t) .

Hence, we see that A2(t) = − 1
αX(t)et. We can then finally solve for X(t) which is defined

by,

c2(X(t), t) =
1

2α
etX(t)2 − 1

α
etX(t)2 + 1 = c∗ ,

and so solving for X(t) (taking the positive square root since 0 ≤ x ≤ 1) we have

X(t) =
√

2αe−t(1− c∗) . (2.12)

Note then that etX(t) =
√

2αet(1− c∗).
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We can then use this information to solve for N3(x), using the fact that n2(X(t), t) =
n3(X(t), t) when x = X(t), or better yet when t = X−1(x). For a fixed x, we can rear-

range (2.12) to get t = − log( x2

2α(1−c∗)). That is, we can then match

n2(x,X
−1(x)) = exp

− log

(
x2

2α(1− c∗)

) =
2α(1− c∗)

x2
= N3(x) = n3(x,X

−1(x)) ,

hence giving us N3(x).

We can finally put all of this unwieldy information together and arrive at our final so-
lution for c(x, t) and n(x, t) when t > tc,

c(x, t) =

{
1
2αx

2et − 1
αx
√

2αet(1− c∗) + 1 if 0 < x < X(t)

c∗ if X(t) < x < 1
, (2.13)

and n(x, t) =

{
et if 0 < x < X(t)
2α(1−c∗)

x2
if X(t) < x < 1

. (2.14)

Part f)

We set α = 2 and c∗ = 1
2 to plot c(x, t) and n(x, t) for t = 1, 2, 3, 4. Note that for these

values we have tc = log 2 < 1, hence we are only in the regime specified by (2.13) and
(2.14). These plots are seen in Figures 2.3 and 2.2.

Note that in these figures, t increasing corresponds to reading the plot “from right to
left” when analysing the critical points x = X(t). We see that at small time t = 1, the
cells are very spread out across the domain. The cells remain at a fixed x value until the
concentration of oxygen reaches c∗, which effectively acts as a trigger to move towards
the origin where, as is seen in the c(x, t) plot, there is a higher concentration of oxygen
at every t value. Viewing n(x, t), some cells get stuck around x = 1, but most are able
to continue moving towards the origin in pursuit of more oxygen. In particular, the cell
density becomes very singular as t → ∞ as the only remaining oxygen quickly becomes
concentrated at x = 0.

Part g)

As discussed above, the cell density approaches a singularity at x = 0 as t→∞, which is
clearly unphysical. As is natural in these scenarios, this behaviour typically has something
to do with carrying capacities, or lack thereof, in the system. Indeed, the governing
equation ∂n

∂t = nF (c) allows for unbounded growth in n(x, t) as t → ∞. Of course, there
is typically a good fix for this by ensuring that there is a carrying capacity in the model
to prevent unbounded growth. Hence for some carrying capacity K we could alternatively
have

∂n

∂t
= n

(
1− n

K

)
F (c) (2.15)

which would ensure there is no singularity behaviour at the origin, hence a much more
physical biological model.
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Figure 2.2: Plot of cell density n(x, t) versus x for t = 1, 2, 3, 4.

Figure 2.3: Plot of concentration c(x, t) versus x for t = 1, 2, 3, 4.
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