
Mathematical Biology Assignment 1

Liam Carroll - 830916

Due Date: 9th September 2020

Q1. Population genetics and the Fisher-Haldane-Wright
equation

In this question we consider the Fisher-Haldane-Wright (FHW) equation,

pA(n+ 1) =
wAApA(n)2 + wAapA(n)[1− pA(n)]

wAApA(n)2 + 2wAapA(n)[1− pA(n)] + waa[1− pA(n)]2
, (1.1)

where pA(n) denotes the frequency of allele A in the population at generation n, and
wAA, wAa, waa ∈ [0, 1] represents the “absolute fitness” of each respective genotype.
Note that we also have pa(n) = 1− pA(n).

Part a)

We first note that in factoring out wAA,

pA(n+ 1) =

wAA
(
pA(n)2 + wAa

wAAp
A(n)[1− pA(n)]

)
wAA

(
pA(n)2 + 2 wAa

wAApA(n)[1− pA(n)] + waa

wAA [1− pA(n)]2
) ,

and then introducing the relative fitness of genotypes Aa and aa,

ŵAa =
wAa

wAA
and ŵaa =

waa

wAA
, (1.2)

we can rewrite the FHW equation in terms of these two relative fitness parameters,

pA(n+ 1) =
pA(n)2 + ŵAapA(n)[1− pA(n)]

pA(n)2 + 2ŵAapA(n)[1− pA(n)] + ŵaa[1− pA(n)]2
. (1.3)

Part b)

In order to keep some cleaner notation, let

pn = pA(n) and qn = pa(n) = 1− pA(n) . (1.4)

Let s, h be new variables (we will deal with their domains later) and define

ŵaa = 1− s and ŵAa = 1− hs . (1.5)

Substituting these into (1.3), we can write (where w̄ is the first denominator)

pn+1 =
p2n + (1− hs)pnqn

p2n + 2(1− hs)pnqn + (1− s)q2n
=
p2n + (1− hs)pnqn

w̄
. (1.6)

1



Part c)

For simplicity, we assume that wAA > waa, and assume that all genotypes have
non-zero fitness. This firstly tells us that 0 < ŵaa < 1, hence

0 < 1− s < 1 , so 0 < s < 1 . (1.7)

We then know by definition that ŵAa > 0 which gives us

0 < 1− hs <∞ , so −∞ < h <
1

s
. (1.8)

We will see later in the question that the bound is important on 1/s in order to
ensure that pAn does not become negative.

Part d)

In order to perform the equilibrium analysis, we first set f(pn) = pn+1−pn and then
solve for f(pn) = 0. We calculate

f(pn) = pn+1 − pn = pn

(
pn + (1− hs)qn

w̄
− 1

)
= 0 , (1.9)

which clearly yields p∗ = 0 as a preliminary solution. We then solve for the bracket
term,

0 = pn + (1− hs)(1− pn)−
(
p2n + 2(1− hs)pn(1− pn) + (1− s)(1− pn)2

)
= (2hs− s)p2n + (2s− 3hs)pn + (hs− s) ,

and so after dividing both sides by s, we can use the quadratic equation to solve

pn =
3h− 2±

√
(3h− 2)2 − 4(2h− 1)(h− 1)

2(2h− 1)
=

3h− 2± h
2(2h− 1)

,

which yields our three equilibrium solutions

p∗ = 0 , p∗ = 1 , p∗ =
h− 1

2h− 1
= P . (1.10)

Part e)

i] For the equilibria p∗ = 0, this represents the case where there are no A alleles
in the population at time n, hence meaning there is no potential for any more to
be produced at the next time step. Likewise the p∗ = 1 case is indicative of a
population of only A alleles, hence no a alleles, meaning that at each subsequent
time-step the population will remain as only A alleles.

ii] In order to guarantee its biological existence, we require that P ∈ [0, 1], hence
we can solve

0 ≤ h− 1

2h− 1
≤ 1 , so h ∈ (−∞, 0] ∪ [1, 1/s) . (1.11)

As in part c) we still require 0 < s < 1.
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iii] In the case of h < 0, we see that this corresponds to ŵAa > 1, so wAa > wAA.
Hence, it corresponds to the scenario in which A and a alleles are able to coexist
(remembering that wAA > waa by assumption) in the population, since the fitness
of Aa is greater than that of AA so A will not completely dominate the system over
time.

By contrast, the case of 1 < h < 1/s corresponds to ŵAa < ŵaa, so wAa < waa.
Since our previous assumption still holds, we have wAA > waa > wAa, which will
cause some interesting dynamics in the system. Ultimately the A allele should dom-
inate for the most part, but both wAA and waa being greater than wAa basically
means the opposite of the first case of h; that is, the system will tend to extermi-
nate one of the alleles, not allowing them to both survive simultaneously.

Both of these predictions shall be borne out in parts g) and h).

Part f)

Consider 0 < h < 1. We will use a standard linear stability analysis argument to
show the stability, or lack thereof, of p∗ = 0, 1. Let pn+1 = g(pn), where

g(pn) =
p2n + (1− hs)pn(1− pn)

p2n + 2(1− hs)pn(1− pn) + (1− s)(1− pn)2
. (1.12)

Consider a small deviation p′n = p∗ + εpn around the fixed point p∗. By considering
a Taylor series of g centred at p∗, we can write

p∗ + εpn+1 = g(p∗ + εpn) = g(p∗) + g′(p∗)εpn +O(ε2) ,

and since g(p∗) = p∗ and ε is small, rearranging we see that

pn+1 = g′(p∗)pn , so pn = g′(p∗)n . (1.13)

This tells us that p∗ is a stable fixed point if |g′(p∗)| < 1, an unstable fixed point if
|g′(p∗)| > 1 and indeterminate (to first order) if |g′(p∗)| = 1.

Clearly our next task is to calculate g′(pn) - this can be achieved by handing it
to a Year 12 student and saying “it’s character building”. One just needs judicious
algebra skills and the use of the quotient rule - we spare the reader such horrendous
simplification details (needless to say, it truly is character building) and instead
present the final derivative of g after performing such steps,

g′(pn) =

(
2hs2(1− h)− s(1− hs)(2h− 1)

)
p2n + 2hs(1− s)pn + (1− s)(1− hs)(

s(2h− 1)p2n + 2s(1− h)pn + (1− s)
)2 .

(1.14)
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Hence, we have

g′(0) =
(1− s)(1− hs)

(1− s)2
=

1− hs
1− s

= 1 +
(1− h)s

1− s
(1.15)

and with yet more judicious algebra (this time handing it to a Year 10), we have

g′(1) = 1− hs . (1.16)

Since by assumption s, h ∈ (0, 1), we see that (1−h)s
1−s > 0 and so |g′(0)| > 1, hence by

(1.13) we see that p∗ = 0 is an unstable fixed point. Further, we see that 0 < hs < 1
and so |g′(1)| < 1, hence p∗ = 1 is a stable fixed point.

Placing this back into a biological context, this tells us that for h ∈ (0, 1), the
frequency of the A alleles will tend to dominate the population as n → ∞, ulti-
mately leaving the a alleles to die out. This is largely a result of our assumption
that wAA > waa which dominates the behaviour of the system in this regime. Even if
we started from p0 ≈ 0 (but not precisely zero), the A alleles would eventually take
over due to their greater fitness, hence propensity to survive subsequent generations,
and pn → 1 as n→∞.

Part g)

We can rewrite (1.6) as

h(pn) = pn+1 = pn +
pnqns(2h− 1)

w̄
(pn − P ) . (1.17)

In order to perform the linear stability analysis we again need to calculate h′(P ),
but because of our clever rewriting above, this is now a simple task:

h′(pn) = 1 +
d

dpn

(
pnqns(2h− 1)

w̄

)
(pn − P ) +

pnqns(2h− 1)

w̄
, (1.18)

and we now see that the horrendous quotient derivative term will drop off when
calculating h′(P )! Hence, we calculate

h′(P ) = 1 +
P (1− P )s(2h− 1)

P 2 + 2(1− hs)P (1− P ) + (1− s)(1− P )2
. (1.19)

By simple analysis we see that for P = h−1
2h−1 we have

if h < 0 then P ∈ (1/2, 1) and; if h > 1 then P ∈ (0, 1/2) . (1.20)

Applying this to (1.19), we see that for h < 0 (and knowing that we always have
0 < s < 1) there is one negative term, (2h − 1), hence meaning that h′(P ) < 1.
Showing h′(P ) > −1 is a much more brutal exercise however, which we relegate
to Desmos in the interest of time. Indeed, we see that h′(P ) = 1 for h = 0, and
h′(P ) → 0 monotonically as h → −∞, hence using proof by Desmos (the correct
proof procedure for an Applied Mathematician, right?) we see that |h′(P )| < 1 and
so P is stable.
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Further, this behaviour is confirmed by our cobweb diagram seen in Figure 1.1
for two different trajectories beginning either side of P .

Since ŵAa = 1 − hs, h < 0 corresponds to the case where ŵAa > ŵAA, and so
over time we see that the frequency of the A allele stabilises to a non-trivial value,
but importantly so does the a allele since pan = 1 − pAn - in other words, P is an
equilibrium for which both A and a exist in harmony in the population, unlike the
other steady states where one ultimately dies out.

Part h)

Now consider h > 1. Again referring to (1.19), we see that every term of the fraction
is now positive meaning that it is immediate that |h′(P )| > 1, hence showing that
P is unstable. Again, the cobweb diagram in Figure 1.2 shows this. Looking at
this cobweb, we see that the value of the starting position p0 is highly indicative
of which equilibrium the system converges towards. In particular, if p0 < P , the
system converges towards p∗ = 0, leading to the extinction of A; alternatively if
p0 > P then the system converges towards p∗ = 1, so the domination of A (and
extinction of a). In other words, we see that P acts as a sort of threshold value
that succinctly describes how the system will evolve depending on what the starting
value is.

Part i)

The main benefit of using this parametrisation with s and h is that it gave us
very easy intervals for h from which we could analyse the system. As we saw in
part h), this ultimately translates into having a single parameter, h, whose values
describe how the the relationship between wAA, wAa and waa impact the dynamics
of the system in a highly non-trivial way (the parameter s is not as important and
basically just corresponds to a shape parameter). Noting the different behaviour we
saw for h < 0 and 0 < h < 1 and h > 1, we see that having such simple intervals
that can synthesise this relationship between fitnesses is very helpful in analysing
the system. Because such bounds do not correspond to easy bounds on the fitnesses
(i.e. they have complicated relations between one another), this clearly shows the
benefit compared to an alternative analysis.
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Figure 1.1: Cobweb diagram for h < 0 showing the stability of P for different initial
values p0 and p′0.

Figure 1.2: Cobweb diagram for 1 < h < 1/s showing the instability of P for
different initial values p0 and p′0.
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Q2. Brushtailed possums in Middle Earth

We will study brushtailed possums with bovine tuberculosis (TB) in New Zealand.
Consider a possum population to have density N(t) per hectare. This population
divides into the contagious infectives C(t) and those without disease, the susceptibles
S(t), hence N(t) = S(t)+C(t). Let β denote a simple natural birth rate, α denote a
natural death rate, αd denote a death rate attributable to the disease, and b denote
the cross-infection rate. Measured estimates have αd > β − α > 0, which also says
that αd − (β − α) > 0 (this will be useful). We can use the following equations to
describe the dynamics of the population:

f1(S,C) =
dS

dt
= (β − α)S + βC − bCS , (2.1)

f2(S,C) =
dC

dt
= bCS − (αd + α)C . (2.2)

Let F (S,C) = (f1(S,C), f2(S,C)) as defined above.

Part a)

To determine the steady states (S∗, C∗) such that F (S∗, C∗) = 0 we set dS
dt

= 0 and
dC
dt

= 0 and solve for S and C. Using bCS = (αd+α)C from (2.2), we can substitute
this into (2.1) and get

(β − α)S + βC − (αd + α)C = 0 , so S =
αd − (β − α)

β − α
C . (2.3)

Hence, substituting this back into (2.2) we get

b(αd − (β − α))

(β − α)
C2 − (αd + α)C = 0 ,

which leads to the two solutions

C = 0 and C =
(αd + α)(β − α)

b(αd − (β − α))
. (2.4)

Putting these back into (2.3), we see that our two steady state solutions are

(S∗0 , C
∗
0) = (0, 0) and (S∗, C∗) =

(
αd + α

b
,

(αd + α)(β − α)

b(αd − (β − α))

)
. (2.5)

Clearly the first steady state is trivial since this gives N(t) = 0, hence just amounts
to a system with no possums in it.

In order to determine the stability of (S∗, C∗), we will again use a linear stabil-
ity analysis. Let g(S,C) = (S,C), hence ġ(S,C) = (Ṡ, Ċ). Then by considering
a small perturbation around the steady state (S∗, C∗), where F (S∗, C∗) = 0 by
definition, we use a standard Taylor series argument to say that

ġ(S,C) ≈ JF (S∗, C∗)g(S,C) , (2.6)
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where JF (S∗, C∗) is the Jacobian of F evaluated at the steady state. The Jacobian
then takes the form

JF (S,C) =

∂f1
∂S

∂f1
∂C

∂f2
∂S

∂f2
∂C

 =

(β − α)− bC β − bS
bC bS − (αd + α)

 . (2.7)

As a warm-up, we calculate the Jacobian of the trivial steady state

JF (0, 0) =

(
β − α β

0 −(αd + α)

)
. (2.8)

With some easy calculations, we calculate the eigenvalues λ and corresponding eigen-
vectors v of this matrix as

λ1 = β − α with v1 =

(
1
0

)
and; (2.9)

λ2 = −(αd + α) with v2 =

(
− β
β+αd

1

)
. (2.10)

Hence we see that since β − α > 0 by assumption, by the stability theorem of (4.9
Edelstein-Keshart, 2005), one eigenvalue has positive real part and hence (0, 0) is
an unstable fixed point.

Next consider the non-trivial fixed point of (2.5). After suitable simplification,
we calculate

JF (S∗, C∗) =


− β(β − α)

αd − (β − α)
−(αd − (β − α))

(αd + α)(β − α)

αd − (β − α)
0

 . (2.11)

Solving for det(JF − λ) = 0 yields a quadratic of the form

λ2 +
β(β − α)

αd − (β − α)
λ+ (αd + α)(β − α) = 0 , (2.12)

which has unwieldy solutions. From lectures, the Routh-Hurwitz conditions tell us
that a necessary and sufficient condition for both eigenvalues of a two-dimensional
Jacobian matrix to have negative real parts is if trJ < 0 and det J > 0. Due to our
parameter constraints, this is clearly satisfied in (2.11), hence it is guaranteed that
(S∗, C∗) is a stable steady state. However, the roots of the quadratic in (2.12) are
clearly non-trivial, so we will classify the type of steady state based on a condition.

We see that (2.12) has solution

λ =
1

2

− β(β − α)

αd − (β − α)
±

√(
β(β − α)

αd − (β − α)

)2

− 4(αd + α)(β − α)

 , (2.13)
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and so clearly the necessary condition comes down to whether the square root term
produces a non-zero imaginary part (spiral) or a zero imaginary part (sink). Hence,
noting that we can factor out a (β − α) term for the condition, we have

(S∗, C∗) is a stable

spiral if β2(β−α)
(αd−(β−α))2

− 4(αd + α) < 0

sink if β2(β−α)
(αd−(β−α))2

− 4(αd + α) > 0
. (2.14)

Part b)

Let our parameters take the following values:

β = 0.305 , α = 0.105 , αd = 3 , b = 0.7 . (2.15)

We first note that with these values our (non-trivial) steady state, using (2.5), will be
(S∗, C∗) = (4.436, 0.317). Further, these values satisfy the spiral condition of (2.14).

Indeed, observing Figure 2.1 we see that our predicted stable spiral at the spec-
ified steady state is the correct description of the dynamics. The spiral takes on
an interesting oblong shape, whereby the number of contagious possums increases
to significant values (such as C = 7 that can be seen in the left hand plot), and
then decreases rather sharply when the death rate due to contagion, αd, overwhelms
the system. Since we have β > α, i.e. more births than deaths, this allows the
number of susceptibles to grow whilst C is still low. However, as can be seen in
Figure 2.2, we always have C(t) > 0 which means that there is always just enough
TB in the system to allow for further infection spikes, thus beginning the cycle
again. Figure 2.2 also demonstrates the stable spiral phenomenon in the form of
damped oscillations of both S(t) and C(t), ultimately converging to the steady state
(S∗, C∗) = (4.436, 0.317).

The dynamics of N(t) = S(t) + C(t) are ultimately quite volatile, as indicated by
the oblong shape (a more circular one would imply more constant N(t) values) and
depend heavily on which stage of the cycle the population is in. The right hand plot
of Figure 2.2 demonstrates how N(t) ≈ S(t) due to the relatively small size of C(t)
at any time value which only provides small fluctuations to N(t) not encapsulated by
S(t). Again, this is largely down to the substantial size of αd = 3 >> β−α = 0.2, so
once a possum is contagious it dies quite rapidly. Ultimately, N∗ = S∗+C∗ = 4.753
is the long-term equilibrium of the possum population which becomes highly stable
as S(t) and C(t) stabilise themselves.

Part c)

Suppose we want to ensure possum extinction by replacing α 7→ α + κ for some
cull rate κ. Observing (2.1), we see that the pivotal term that causes stable possum
numbers in the longrun is (β − α)S, therefore to ensure possum extinction we need
β − α < 0. Clearly, if we then set κ > β − α, hence β − (α + κ) < 0, we will
ensure that the possums will eventually be extinct. Plotting this scenario with
α + κ = 0.400 > β = 0.305 on pplot8 demonstrates that this does incur the desired
outcome of eventual extinction, N(t)→ 0, as (0, 0) becomes a sink as predicted with
the eigenvalues in (2.9) since we now have β − α < 0.
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Figure 2.1: Phase plane portrait created using pplane8 with values specified by part
b). Left hand side: (S,C) ∈ [0, 10]2 and right hand side: (S,C) ∈ [3.5, 5.5]× [0, 1].

Figure 2.2: Numerical solutions for S(t) (blue) and C(t) (red) given some initial
condition. LHS: t ∈ [0, 450] and; RHS: t ∈ [0, 30]

Figure 2.3: 3D Composite of trajectory of S(t), C(t) as t varies, because it’s fun to
look at and why not?



Q3. Gene activation

Consider a gene G that is activated by the presence of a biochemical substance S.
Let g(t) be the concentration of the gene product at time t and assume that the
concentration of S, denoted by s0, is fixed. A model describing the dynamics of G
is

dg

dt
= k1s0 − k2g +

k3g
2

k4 + g2
, (3.1)

where each k1, k2, k3, k4 > 0 is constant and s0 ≥ 0.

Part a)

We first notice that the P = k3g2

k4+g2
term is a so-called “predation” term (J.D. Mur-

ray, 2002) though unlike how it is used in the spruce budworm example, the sign
here is flipped. Importantly, this term saturates for large enough g values, which in
our case means that for g = 0 we have P = 0, but then past some critical value, say
g ≈ 3 (in the case of k3, k4 = 1), we will have P ≈ 1 as g → ∞. The point is that
P acts as a kind of “switch”, and so in our case, once g reaches a particular level,
this switch will be activated forever more, hence activating G. Here, k3 represents
a kind of velocity and has units g/t, whereas k4 represents the threshold activation
level beyond which the gene has well and truly been activated by S.

Of course, we can only reach this level of saturation if there is any gene activated
at all, and this is where the L = k1s0 − k2g term comes into the picture. If we
had k3 = 0, then we would yield a solution of g(t) = k1s0

k2
(1 − e−k2t). This tells us

that k1s0 (where k1 is some rate of substance parameter) is the natural bound on
the activation, and asymptotic solution, before the P term kicks in, and k2 is the
velocity of this change in g(t).

Part b)

Using dimensionless parameters (which we will take as gospel), we can rewrite (3.1)
as

f(x|s, r) =
dx

dτ
= s− rx+

x2

1 + x2
, (3.2)

where r = k2
√
k4/k3 and s = k1s0/k3. We now set r = 0.4 for the remainder of the

question. The plot asked for can be seen in Figure 3.1.

Part c)

Using Figure 3.1, and a slightly enhanced sketch displaying flow lines in Figure 3.2,
we present a bifurcation diagram for f(x|s, r) in Figure 3.3. As can be seen, the
bifurcation point - a saddle node, where the stable and unstable points “collide” -
occurs at (s, x̄) = (0.0418, 0.2198) which was found by finding the global minimum
of f(x|0, 0.3) and solving appropriately. Note that the line emanating from the top
x̄ value represents the fact that the third steady state is always stable for any s ≥ 0.
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Figure 3.1: dx
dτ

vs. x for different values of s

Part d)

Assume there is initially no gene product, so x(0) = 0. When the process begins
with s = 0, we clearly have dg/dt = 0 hence there will be no activity. As we
slowly increase the s value, say to s = 0.01, x(τ) will slowly move to the new stable
saddle point x̄1 > 0, which clearly will shift slightly as we slowly increase s. Then,
once s > 0.0418, the gene’s activation level will very quickly move towards the
other stable saddle point x̄3, where it will asymptote towards this value. It is past
this bifurcation point when the gene activation “really kicks in”, since the level of
activation at x̄3 is far greater than that of the first few steady states, particularly
as s increases well beyond 0.0418.

Part e)

If we instead suppose that s = 1 to start with (and still x(0) = 0), then we find
that the speed of the reduction of s truly makes a difference. Supposing it is slowly
decreased as in the question, then x(τ) will approach x̄3 and stabilise there. Even
when s < 0.0418, it will still be attracted to x̄3 (since x̄2 is an unstable steady state),
hence the gene will not turn off again but merely stay close to x̄3.

If, however, the turning-off process happens quite quickly, then (without having
done the formal analysis), it is possible that x(τ) hasn’t made it that far along the
x-axis, and so if s < 0.0418 rather quickly then x may become trapped in the region
between x̄1 < x(τ) < x̄2, where it would hence be attracted to the stable node x̄1
as it didn’t have enough time to make it close to x̄3, hence meaning the gene would
turn off again.

We also note that we could again use pplane8 to perform this analysis by setting
something like ds/dt = −0.05s and observing the dynamics with s(0) = 1 and
x(0) = 0. We leave this as an exercise to the reader.
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Figure 3.2: dx
dτ

vs. x for s = 0 with flow lines

Figure 3.3: Bifurcation diagram for (3.2) as s varies
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