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Q1. Loss functions

Let Xq,..., X, <y Uniform(0, 6), 6 € © = (0,00). Consider estimators of § of the
form Tj, = bX(,), where X,y = max(Xy,..., X,).

We first note the standard fact that the maximum order statistic is distributed
as

n 0 ifz <0
Fx, (x) =[] P(Xi <2) = Fx,(2)" =3 (8)" if0<z <0 (1.1)

=1 1 ifx >0

nx™ !
with pdf  fx, (z) = o 1(0<x<9). (1.2)
Hence we can calculate
0 ) n
E[X| = —z"dy = , 1.3
Yool = [ ageantde = (1.3
2 ‘ 2 1 o 9

d E[X;/.\]= [ — 0 1.4
an [ (n)] /0 2 o x ) (1.4)

Part a)
We will use the loss function L(6,t) = (¢t —6)? to calculate the risk function R(6,T}).

We can calculate
R(0,T,) = E[L(0, Ty)] = E[(bX(n) — 0)°]
= b2]E[X(2n)] — 2b9E[X(n)] + 62

n 2n
:02<n+2b2_n+1b+1>' (1.5)
1)

We can then solve OR/0b =0 (i.e. f'(b) = 0) for all values of § € © by noting that
it is a simple quadratic, hence

~ 1/ =2 2 2
b:——( n><n+ >:n+ (1.6)
2\n+1 n n+1

is the value of b that minimises the risk function.




Part b)

Now instead consider the loss function L(0,t) =t/0 — 1 —log(t/0) and calculate its

corresponding risk:

R(@, Tb) = E[bX(m/@ —1- IOg(bX(n)/Q)]
B b nb
_§n+1

J/

gﬁ)

To optimise R we can calculate the minimum of g(b) to find

, n 1 = n+1
= = — — b:
g'(b) =0 n+1 b’ i n

is the value of b that minimises the risk R(6,T}).

— 1 —log(b) —E[log(X,/0)] .

(1.7)



Q2. Bayesian approach

Let X;,..., X, be arandom sample from a population with pdf

n/2
f(z]0) = \/271269121($ >0), so f(xX|0)= <2—0> XL TR >0)  (2.1)

™

where 6§ > 0 is unknown.

Part a)
Define a prior m(#) as Gamma(a, b) with a,b > 0 being known constants, that is,
1
0la,b) = ———0""te "P1(0 : 2.2
w(6la.b) = et e L0 > 0) (22)

Then we can first calculate the marginal distribution of X for f(X, 6) = f(X|0)w(0|a,b),

where we set K = > | z7 for notational simplicity:

m(®) = /@ (%, 0)d0
6

/ 2_ €—K0 1 0a—1€—9/bd0
0 T [(a)b®

1 0o
0(a+n/2)—1 _(K+1/b)9d9
rwwl )

/oo a (a+n/2)—1 o dov
o \K+1/b K +1/b

n/2 1 1 at+n/2  poo (an/2)—1
a+n — —Oéd
F@W(K+M) A(I © o

)W F(;)ba (K+11/b)a+n/2r<a+n/2)- (2.3)

Then the posterior distribution is

f(x[0)=(6)
m(X)

n -1 n
[ (2 " T(a+n/2) 1 i 2 21 platn/2)—1 —(K+1/b)0
7r T(a)pe \K +1/b 7)) T(ape
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for & > 0. Hence, since the posterior distribution is also a Gamma distribution, i.e.
Jog(0)X) € Il = {Gamma(a,b) : a,b > 0} for all = € I, for all f € F (specified by
(2.2)) and for all z € R, we conclude that the Gamma prior is a conjugate prior for
6. O

(2.4)



Part b)

We will calculate the Bayes estimator T such that BR(TB) = minT BR(T) under
the loss function L(6,t) = (t — #)?, where BR(T) = [ R( 6)df. From the
theorem in class, this is equivalent to an estlmator that minimises the posterior

expected loss Egz[L(0,T(X))] over all estimators, for each fixed X € S. Then

E9|§[L(9, T(f))] = Eg‘g[(t — 9)2] = tz — 2E9|§[9]t + E9|§[92] ,
which is minimised at ¢ = Egz[6] . (2.5)

We then appeal to the fact that for G ~ 7(0|«, 5) we have E[G] = af, so using
(2.4) we have the Bayesian estimator of ¢

a+n/2

R Ve
i=1"1

(2.6)

Part c)

Using all of the proceeding theorems, the Bayes estimator of g(#) = 1/2/76"/? under
square error loss is the posterior expected value of g(6), hence we can calculate
(where C refers to the horrendous constants in the distribution Gamma(a’, ') that
we substitute in afterwards),

Egiz[g( / \/791/20 gotn/2—1e—(Eim #i+1/0)0 gg

_\/2 (a+n/24+1/2) >0, x7+1/b)~ (a+n/2+1/2)
=\ D(a+n/2)(> 01, 22 + 1/b)~(atn/2)

:\ﬁ T(a+ (n+1)/2) @7
TT(a+n/2)\/> 1 1x2+1/b




Q3. Moment estimator and asymptotic

distributions
Let X4,..., X, be a random sample from the following discrete distribution:
2(1-0) 0
P(X:=1) = P(X;=2) = —— 1

where 6 € (0,1) is unknown. We can first obtain a moment estimator of 6 by
equating means,

1 2(1 -6 0 2
m= Y x =B =0 @9 - 2
=1
0 f—2— = (3.2)
Xn

is our method of moments estimator for this distribution. We can then use the delta
method to find its asymptotic distribution. The central limit theorem tells us that

— d 9 2 s 20(1—0)
\/E(Xn —IU) — N(0,0’ ) where n = 5_ 9 and o* = W (33)
We can then set § = g(X,,) where
2 2
gly)=2-=,  so g(y)=—. 3.4
() ) (y) /2 (3.4)

Then the delta method tells us

Vi {g(X,) —g(w)} % N(0,0%' (n)?) = N <o, 4%4) _N (07 0(1 — 9)2(2 —0) ) |

(3.5)
Hence, noting the easy calculation that g(u) = 6, we arrive at the asymptotic
distribution of 6,
- 6(1—0)(2—0)?
0 =g(X,) iN(@, (1-6)2=9) ) . (3.6)
2n
0



Q4. Test functions for Gamma

Let Xq,..., X, bES- Gamma(r, A) where r > 0 is known and A > 0 is unknown. We
use the shape-scale parametrisation with pdf

flzlr,\) = Wx’“’le’x/)‘]l(x > 0). (4.1)

We can easily calculate L(\) = f(X|\,r) as

L(\) = (F(:)N)n (E :L‘l) exp [—%;3@] (4.2)

Part a)
We will first find a most powerful test (MPT) of size « for testing

Hy: X=Xy versus H;: A=)\, (4.3)

where \g and \; are fixed real numbers satisfying 0 < g < A;. We know from
Neymann-Pearson’s lemma that for a continuous jpdf we have a MPT of the form

LN > e (1)
e {0 if £(%|\) < ef (%Mo) 44

for some ¢ > 0 which we aim to calculate. We consider the first inequality and
calculate

() () oo [ sse] ol ()[4 5

1 & 1 &
— A" exp —/\—12% > cA\y " exp [—)\—OZ%] ,

I & 1 <
— —nrl A——E > 1 —nrl )\——E i
nrlog A; N 2 T ogc — nrlog Ag » 2 z
— <1 1) " s > loge o nrlog 22
—_— - — x; > logc+ nrlog —,
o M) = i X
- )\0/\1 )\1
— E > — |1 log— ) =c¢.
i:1az )\1_)\0<ogc+nrog)\0> c1

(4.5)

In the last step we used the fact that A\g < A1, so we didn’t have to flip the inequality.
So our condition now becomes

Ex[0(Xn)] = Px, (Z Xi > Cl) =a. (4.6)



Then we know from elementary properties of the Gamma function that

Z X; ~ Gamma (Z Tis A) = Gamma(nr, \) , (4.7)

=1 =1

which then allows us to write, under Hy,
2 n
" Z X; ~ Gamma(nr,2) ~ x5, - (4.8)

So we can then write, where F'(z;2nr) is the CDF of x3,,.,

=1-F (&;2717") . (4.9)
Ao

Denoting x3,.(k) as the kth quantile of a x2,,. distribution, we rearrange the above
to see

A
€1 = %X%nr(l - Oé) : (41())

Therefore we can write the most powerful test for this hypothesis test as
1T X > 2,0 a)
O(X,) = . (4.11)
0 if Z?:l X’L < é_oxgnr(l - Oé)

Part b)

We now want to find a uniformly most powerful (UMP) test of size « for testing
Hy: X< )Xy versus Hp: > \g, (4.12)

where \g € R* is fixed. Letting (0,\g] = Oy C © = (0,00), we see that we can
apply the theorem from lectures. It is clear that the MPT in (4.11) is not dependent
on A1 ¢ O, so we just need to check that maxyce, Ex[¢(X,)] = a. We see that

A
= (> - 0)) (4.13

which, viewed as a function of X is increasing, meaning that the maximum occurs
at the boundary, A = \g. Hence,

&%%%EAWOEH)] =Ey[¢(Xn)] = . (4.14)

Therefore, by this theorem we have that (4.11) is a UMP test for this hypothesis.



Part c)

We will now find a likelihood ratio test of size a for testing
Hy: X=Xy versus Hi;:\# )\, (4.15)

where \g > 0 is a fixed real number. Under Hy, the MLE of A is \g. For the domain
©, we can calculate the MLE (where r is known, hence a fixed constant):

n n r—1
Ar) <H x) e = M ) > 0),
i=1
1 n
so logL =—nlogl'(r) —rnlog\+ (r — 1) (Zlogxl> — X;x“

Olog L
so setting (;)i rn )\2 Z z; =0

i = (175

A 1 1—
h = — i =-X,. 4.16
we have - E Ti = (4.16)

Hence, we have our LRTS,

) ) e BN () > 0)

) Por) e Zﬁ:lxi/;\l(ac(l) > 0)

)\0|Xn
(Alxn)

I( 7"))\7

A(Xn) =

I(r
)\ —
(7) e N (4.17)
A
Our likelihood ratio test is then defined as
1 ifAX,) <c
D(X,) = 7 (4.18)
0 ifAX,)>c

which satisfies Ey,[¢(X,,)] = P\, (A(X,) < ¢) = a. We first find a better condition on
our LRTS (where ¢; > 0 is another constant)

ANX,) < c
)\ —nr nz
— (?O) e NN < ¢
A —nr nx
- (%) e <o
— (—Zi x) e 30 T <oy (4.19)
nrAig
As in part a), we can then define
2 )
i=1



where our inequality (4.19) now becomes

Y nr
(—> e Y/? <
2nr

— ane—Y/Q < Ca,
for some constant ¢y > 0, meaning we can now define

gly) = y"e
which satisfies Py,(g(Y) < c2) = o

9(9)

/ D
/;/“; ////// /) 2s0s

jl y).

Figure 4.1: Plot of g(y) displaying values for which inequality holds.

Using Figure 4.1 as a guide, we can translate our a condition into
Py(0<Y <y1)+ Py,(Y >1y2) =a, where g(y1) = g(y2) = c2.

Then since Y ~ X3, we can define quantiles gy, g2 > 0 where

Py(0 <Y <y1) =q and Py, (Y <yp) =g suchthat 1+¢1 — ¢ =

Hence we can now write

N = X%nr(ql) and Yo = X%nr(l —a+ Q1) .
Therefore, after much effort, our acceptance and rejection regions are

A A
A¢(>\U> = [ongnr((h)? ?Oxgnr(l —a+ QI):|

A A
R¢(/\0) = A<)\0)C = (07 gngnr((h)) U (?Oxgnr(l —a+ Q1)7 OO) )

meaning our LRT of size « is

1 it S X € R(A)
$(X,) = -
0 if Z?:l X; € A()\Q)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)



Q5. Another UMP Test

Let X;,..., X, be arandom sample from a population with pdf
1/6—1
6
where 0 € © = (0,00). We want to find a UMP test for testing

X

F(z]6) = 10<z<1)), (5.1)

Hy: A< Xy versus H;:\A> )\, (5.2)
where 6y € O is fixed. We start by finding a MPT for
Hy:0=10y versus Hy:0=6, (5.3)

where 6; > 6. We note that the joint pdf of f is in an exponential family since we
can write

1/6-1

f(X]0) = (%)n <ﬁ m) [[r0<z<1)

=1

=0 "HILO<Q:,<1)eXp (1-1/6) ( Zlogwl> . (5.4)
c(9) =1 g , w(0) N -
h(Xn) t(Xn)

Since w(#) is non decreasing in 6 on ©, we see that this family of pdf’s has a
monotone likelihood ratio in #(X,) as labelled above. By the theorem in lectures,
this tells us we have a UMP test of size « as

1oif =37" loga; >c
P(Xn) = : (5.5)
0 if —>" logz; <c

We then will need to find the distribution of #(X,), so we start by finding the
distribution of Y = —log X:

Fy(y) = P(=log X <)

=P(X >e™)
=1- / Lo gy
o 0
=1- 5"
=1-eY", (5.6)

which tells us that Y ~ Exp(1/6), hence we have

t(X,) = — Zlog x; ~ Gamma(n, 6), (5.7)

=1

10



where Gamma has the shape-scale distribution as in Q4, hence we can use the same
facts about chi-square in our calculations. So to determine ¢, we set

a = By, [¢(%0)] = Py (H(Xn) > ©)

2
=Py, (Xgn > 9—00) . (5.8)

Using the exact same arguments and notation as in Q4, we arrive at our UMP test
for this hypothesis test,
B Lif 350 X > 93,(1— o)
O(X,) = ‘ . . ) (5.9)
0 if 0, Xi < Pxgu(1 —a)

11



Q8. Confidence intervals

Part a)

To find a 1 — « confidence set for A we can invert the likelihood ratio test established
in question 3. We had an acceptance region of

Ao
A¢()\0) = { : X2nr Q1 < sz = X2nr —a+ QI)}
D FIS T le RN
X?nr<1 —a+ ql) i=1 X2n7" QI
Hence our 1 — « confidence region for A is

O%) = {)\ X2nr(1 - 04+Q1 z; X2nr Q) z; } (82

Part b)

Throughout this question we have met the location-scale based statistic

Xm /\0 Z X X2m~ ) (83)

and so since ) does not depend on A\, we see that this is a well defined pivotal
quantity. Hence we can define ¢q, co > 0 such that

P,\(CngSCQ):l—Oé. (84)
Setting it to be an equi-tail confidence region then gives us

PA(Q<c)=P(Q>c)=a/2, (8.5)

hence meaning we have

€1 = Xane(@/2) and o3 = x5, (1 — @/2). (8.6)

Therefore our 1 — « confidence region for \ based on the pivot @ is

I R S-S T
C(X“_{”x%m(am; A e & } 0

12



Q9. More likelihood ratio tests

Let Xi,..., X, S N(u,0?), where 4 € R and 0% > 0 are both unknown.

Part a)
We start by finding a likelihood ratio test of size a for testing

Hy:p=po versus Hy:pu# o

where pp € R is fixed. Hence we define

O = {(11,0%) : p = po, o* > 0}
0= {(u,0*):peR, o*>>0}. (9.1)

We begin by calculating the MLE of 6 = (u, 0?) over the two sets to determine the
LRTS. The likelihood function for a normal distribution is

L(p, 0®[%,) = (2m) 2 (0%) 2 exp [—%‘2 ;(:B - #)2] : (9-2)
and then we can differentiate log L to see
maoiL:%il(ﬂfi—M), %)T%L:—%‘Fﬁ;(%—ﬂ)? (9.3)
Setting both derivatives to 0 we see that the MLE for 6 over © is, where 6 = (1, 62),
p=, &= 1 zn:(xi —7,)%. (9.4)
o
By contrast, over the set ©y we have 6y = (jiy, 62) where
o= s =23 (. 05
i=1

Therefore we calculate our likelihood ratio test statistic as
A -5 n —3 i (@i—po)?
Ll _ 27 (T o) e [ HEC o]
L(Qlin) <27T)7% (% Z?:l(xi - En)2)_% eXp |:— Zzlzl(xi_fnp ]

2% Z?:1 (i —Tn)2

- (Fle i)™ o

1 if AX,) <c
O(Xn) = , (9.7)
0 ifAX,) >c

13



where ¢ satisfies P,,(\(X,) < ¢) = a and since o? is also unknown, this has to hold
for all 0% € © too. Noting the following identity derived in the first assignment,

n n

Z(ﬂfz — po)? = Z(ﬂfz —Tn)? + Z(Tn — o)’ = Z(l‘z — T)° + (T — o),

=1 =1 =1 =1

(9.8)

we can then calculate, for constants ¢y, cy > 0

Z?ﬂ(% — t1o)” ) 2
> i (v = T)?
n 2
— Zifl(xz ,‘_LO)2
> i (T — Tn)
D oica (@i — Tn)? 4+ (T — o)
Z?:l(mi - f71)2
n<fn — ,U/O)2
= S (7] > (. (9.9)
i=1\Ti n
We then note that the denominator term looks very close to the sample variance,
hence implying that we should multiply by (n — 1) and then take the square root to
get a familiar distribution. Hence, we have for c¢3 > 0

\/ﬁ‘fn - ,UO‘

= > c3. (9.10)

\/ﬁ Z?:l(xi - fn>2

<c

AR, = (

> C

> C

We can then define the new statistic under the null hypothesis, where S? is the
sample variance and ¢,,_; is the Student’s t-distribution with n—1 degrees of freedom,

\/E(Xn )

T =
Sy,

~ bt (9.11)

and we see that our condition on the LRTS becomes
Po(T|>e3) =1 =P, (|T| < c3) = (9.12)

hence indicating that we should choose ¢z = t,,_1(1 — «/2), the (1 — a/2)-quantile
of t,,_1. Therefore, the LRT of size o for this hypothesis testing scenario is

1 if [T] > tar(1— a/2)
P(Xn) = . (9.13)
0 i |T] < tas(l — a/2)

]

14



Part b)

From part a

~

, our acceptance region for this LRT is

- ’\/ﬁ(yn — o)
Sn

Il
/—/_\f—/_\T/—/H
1
3

Ay(0o)

Xn

<ty (1 a/2)}

R o]« St =012}
_ Iz _Sntnlf/lﬁ_ a/2) <X, - < Sntnlf/lﬁ_ a/2)}

Sptn_1(1 —a/2)

_ Satp1(1 = @/2)
NG } . (9.14)

vn

Therefore, our 1 — « confidence set for p is

[ Satei(l—a/2) — | Sataa(1—0a/2)
C(X,) = [Xn NG , X+ NG ] :

We note that this confidence set is indeed an interval.

= inyn S,UOSYn"i_

(9.15)

Part c)

We see that along the way we have already found our pivot quantity, namely T,
whose distribution does not depend on u. For a 1 — « equi-tail confidence set, in
setting P,(c; <T < ¢3) = 1 — a we have the same calculation as in (8.4) and (8.5),
hence giving us

¢ =tnh-1(a/2) and o =t,1(1 —a/2). (9.16)
Therefore our 1 — « confidence region for p based on the pivot 7' is

[ Sataa(l—a/2) —  Sateoi(a/2)
C(X,) = | X, NG X /n

(9.17)

15



Q10. Pivoting on a CDF

Let X;,..., X, be arandom sample from a population with pdf

F(]8) = %xz 10 < 2 < 6), (10.1)

where 6 > 0 unknown. An elementary calculation shows that the cdf is

0 if £ <0
Fx(z]0) =< (2)° if 0<z <9 . (10.2)
1 if x>0

Part a)

We will first find a 1 — o confidence interval for 6 by pivoting the cdf of
Xy = max{Xy,..., X,}. We first calculate the cdf of X(,:

Py, (z]0) = P(X(m) <) = P(max{Xy,..., X} <)

n

=[[P(xi <o) =[] Fxal0)

0 if ©<0
= (&) fo<ar<h. (10.3)
1 it ©>0

Therefore, in defining the random variable Fx , ~ Unif(0,1), we have a pivotal
quantity. We then note that for any fixed value of x, Fy , (z|0) is a decreasing
function of 6. Hence by the theorem in class we define C(X,,) = [0.(x), 0y (x)] by

Fx, (z|0u(z)) = an and Fx (z]0(z)) =1 —asg, (10.4)

where aq, as < 1 satisfy a; + as = a. We will then assume an equi-tail confidence
interval for simplicity, setting oy = as = «/2. Then we solve (where we note
0 < /2 < 1 when solving),

R L L
2

T 3n —a 9 1/3n
and similarly (M) = so Op(x) = (2 — 04> x.  (10.6)

Therefore, our 1 — « confidence interval for 6 is

9 1/3n 9\ 1/3n
C%Xm»=:{9:< > <Xm)§053<—> ;&m}. (10.7)

2—« a

16



Part b)

This time we construct a confidence interval based on a pivotal quantity. We have
already seen that X(,) has a favourable distribution, so appealing to the fact that we
can create pivots from a location-scale family, we can define a new pivotal quantity
Y = X(,,)/0. We verify that it is indeed a pivot:

(

if z<0
BT i )<y <6
if 0y > 0
if v <0
mof0<y<1. (10.8)
if y>1

P(Y <) = P(X()/6 < y) = P(X(s) < 0y) =

0
(
|1
(0
Yy
L1

We can hence clearly see that the distribution of Y is independent of 6, meaning it
is a well defined pivot. We then define ¢1, co > 0 such that

Pyei <Y <) =1—-q,
and once again using an equi-tail confidence region we set
Py(Y <) = P(Y > ) = /2.

Respectively, this yields

0= (%) and cy = ( 5 a) . (10.9)

So we can now write our confidence interval as

aN1/3n X, 2 a\™"
Om:{@:(E) < é)g( 2 ) }
{9 : (2 - a) Xy <0< (2) X(n)} (10.10)

As anticipated, this is the same interval that we arrived at in part a). Hallelujah!

17



Q11. Evaluation of confidence intervals
Let X;,..., X, be arandom sample from a population with pdf
f(z]0) =02 1(0 <z < 1), (11.1)

where 0 € © = (0, 00), with cdf

0 if <0
F(zlf) =<2’ if 0<y<1. (11.2)
1 ify>1

Part a)

We will find a 1 — « confidence interval for € based on the statistic

T(X,) =—> . log X;. By boxing smart, we notice that this is actually the same
distribution as in Q5, but with 6g1; = 1/6gs. Hence we can use the exact same
calculation as in (5.6) and (5.7) to get

T(X,) ~ Gamma(n, 1/60). (11.3)
Hence we can scale this statistic to produce our pivot,
T =20T(X,) = Gamma(n,2) ~ X3, - (11.4)

We then find ¢y, ¢o > 0 such that Py(c; < 207T(X,,) < ¢2) =1 — . As in question
8b), setting an equi-tail once again, we have

c1 = x5, (a/2) and ey = X3, (1 —a/2). (11.5)
Therefore, our 1 — « confidence interval is

X, (0/2)
2(— > i, log X3)

<40

IN

C(X,) = {9 : Xon(1 = 0/2) } . (11.6)

2(= 201 log X5)
Part b)

We now want to find the shortest 1 — « interval for 6 of the form [a/T',b/T], with
T as before and a < b are real numbers. We can calculate the confidence coefficient
as follows:

a b
pe(fgegf) = Py (2a < 20T < 2b)

— P (20T < 2b) — P (20T < 2a)
= FT/(Qb) — FT/(Q(I) . (117)

Noting that we have Ey[b/T — a/T| = (b — a)Ey[1/T], this suggests we want to
minimise b — a subject to

FT/<2b) - FT/(2CL) =1- a, (118)

18



hence we can rearrange to find

1
a=3 S Fr(20) — (1 — )] . (11.9)
We then note for an arbitrary bijective function g(x) : R — [0, 1], we have
dg~(x) 1
= . 11.10
L @) 0
We see that Ff,l satisfies these requirements, hence we can set
1
h(b) =b— 5FT—,1 [Fr(20) — (1 — )], (11.11)
we can then calculate the derivative as follows:
/(2
dh — frr(20) . (11.12)
db fT’(FT/ [FT/(2b) — (]_ — Oé)])
Hence, the value of b that minimises h satisfies
Fr0(26) = for (it [Fo(26) = (1 = ) (11.13)

Unfortunately, f7+(t) is not actually a bijection, meaning it is difficult to progress
further from here.

Whilst the mathematics of this calculation are quite awful to look at, there is a rela-
tively simple intuitive explanation for what we seek. We know from lectures that for
a unimodal pdf f(x), if we can find an interval [a, b] such that i) f; flz)dz =1—q,
ii) f(a) = f(b) > 0 and iii) a and b fall either side of the mode of f, then [a, b] is the
shortest interval that we seek. Clearly this theorem is telling us that the shortest
interval occurs around the region of highest ‘mass’, being the mode.

Drawing a visual picture, we can imagine a line y = k that begins tangential to
the mode on f. As we slowly reduce the value of k£ (move the line down), hence
yielding intercepts of f(a) = f(b) on either side of the mode, the total enclosed
integral will be some value M. Our shortest interval is then found by finding the
particular value of k£ such that M = 1 —«. With suitable numerical calculation, this
can be easily determined using such constraints.

Part c)

Suppose 0 has the prior 7(6|r,\) as Gamma(r, \) with the same pdf as in (2.2),
where both r and A are known. We want to find a 1 — o Bayes highest posterior
density (HPD) credible set for . We have the posterior distribution as:

f@lin (01%,) o< f(Xn|0)m(0]r, A)

n+r—1 1 .
ox 0" L exp [—9 (X — Zlogxi 1(0 > 0), (11.14)
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meaning we can write

Foa (0]%a) ~ Gamma [ n+1,

n —1
% - Zlogxi] . (11.15)

=1

Then, we know from lectures that a 1 —a Bayes HPD credible set for 6 has the form
C(Xn) =1{0>0: foz, (0]%) > k} (11.16)
for some k > 0 such that
PlecCX)|X,=%,)=1—a. (11.17)

Since Gamma is a unimodal distribution, we know that this credible set will take
the form of an interval,

OX,) = [00(X,).00(X,)] - (11.18)
with the additional constraint from (11.16) giving us

- 1 X
so 07" exp [_0L (X — log x,)] = 0" exp [—9U (X ~ > log l’z)] :
i=1 i=1
(11.19)

As long as all of these constraints are satisfied, we have found our HPD credible
set of level 1 — « for € - in order to gain more specific results we would need the
assistance of numerical calculations.

]
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