# Mathematical Statistics Assignment 2

Liam Carroll - 830916

#### 17th June 2020

## Q1. Loss functions

Let  $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \text{Uniform}(0, \theta), \ \theta \in \Theta = (0, \infty)$ . Consider estimators of  $\theta$  of the form  $T_b = bX_{(n)}$ , where  $X_{(n)} = \max(X_1, \ldots, X_n)$ .

We first note the standard fact that the maximum order statistic is distributed as

$$F_{X_{(n)}}(x) = \prod_{i=1}^{n} P(X_i \le x) = F_{X_1}(x)^n = \begin{cases} 0 & \text{if } x < 0\\ \left(\frac{x}{\theta}\right)^n & \text{if } 0 \le x \le \theta\\ 1 & \text{if } x > \theta \end{cases}$$
(1.1)

with pdf 
$$f_{X_{(n)}}(x) = \frac{nx^{n-1}}{\theta^n} \mathbb{1}(0 \le x \le \theta).$$
 (1.2)

Hence we can calculate

$$\mathbb{E}[X_{(n)}] = \int_0^\theta x \frac{n}{\theta^n} x^{n-1} dx = \frac{n}{n+1} \theta, \qquad (1.3)$$

and 
$$\mathbb{E}[X_{(n)}^2] = \int_0^\theta x^2 \frac{n}{\theta^n} x^{n-1} dx = \frac{n}{n+2} \theta^2.$$
 (1.4)

#### Part a)

We will use the loss function  $L(\theta, t) = (t - \theta)^2$  to calculate the risk function  $R(\theta, T_b)$ . We can calculate

$$R(\theta, T_b) = \mathbb{E}[L(\theta, T_b)] = \mathbb{E}[(bX_{(n)} - \theta)^2]$$
  
=  $b^2 \mathbb{E}[X_{(n)}^2] - 2b\theta \mathbb{E}[X_{(n)}] + \theta^2$   
=  $\theta^2 \underbrace{\left(\frac{n}{n+2}b^2 - \frac{2n}{n+1}b + 1\right)}_{f(b)}$ . (1.5)

We can then solve  $\partial R/\partial b = 0$  (i.e. f'(b) = 0) for all values of  $\theta \in \Theta$  by noting that it is a simple quadratic, hence

$$\tilde{b} = -\frac{1}{2} \left( \frac{-2n}{n+1} \right) \left( \frac{n+2}{n} \right) = \frac{n+2}{n+1}$$
(1.6)

is the value of b that minimises the risk function.

Now instead consider the loss function  $L(\theta, t) = t/\theta - 1 - \log(t/\theta)$  and calculate its corresponding risk:

$$R(\theta, T_b) = \mathbb{E}[bX_{(n)}/\theta - 1 - \log(bX_{(n)}/\theta)]$$
  
=  $\underbrace{\frac{b}{\theta} \frac{n\theta}{n+1} - 1 - \log(b)}_{g(b)} - \mathbb{E}[\log(X_{(n)}/\theta)].$  (1.7)

To optimise R we can calculate the minimum of g(b) to find

$$g'(b) = 0 = \frac{n}{n+1} - \frac{1}{b}, \text{ so } \tilde{b} = \frac{n+1}{n}$$
 (1.8)

is the value of b that minimises the risk  $R(\theta, T_b)$ .

## Q2. Bayesian approach

Let  $X_1, \ldots, X_n$  be a random sample from a population with pdf

$$f(x|\theta) = \sqrt{\frac{2\theta}{\pi}} e^{-\theta x^2} \mathbb{1}(x \ge 0), \quad \text{so} \quad f(\vec{\mathbf{x}}|\theta) = \left(\frac{2\theta}{\pi}\right)^{n/2} e^{-\theta \sum_{i=1}^n x_i^2} \mathbb{1}(\vec{\mathbf{x}} \ge 0) \quad (2.1)$$

where  $\theta > 0$  is unknown.

#### Part a)

Define a prior  $\pi(\theta)$  as Gamma(a, b) with a, b > 0 being known constants, that is,

$$\pi(\theta|a,b) = \frac{1}{\Gamma(a)b^a} \theta^{a-1} e^{-\theta/b} \mathbb{1}(\theta > 0) \,. \tag{2.2}$$

Then we can first calculate the marginal distribution of  $\vec{\mathbf{x}}$  for  $f(\vec{\mathbf{x}}, \theta) = f(\vec{\mathbf{x}}|\theta)\pi(\theta|a, b)$ , where we set  $K = \sum_{i=1}^{n} x_i^2$  for notational simplicity:

$$m(\vec{\mathbf{x}}) = \int_{\Theta} f(\vec{\mathbf{x}}, \theta) d\theta$$

$$= \int_{0}^{\infty} \left(\frac{2\theta}{\pi}\right)^{n/2} e^{-K\theta} \frac{1}{\Gamma(a)b^{a}} \theta^{a-1} e^{-\theta/b} d\theta$$

$$= \left(\frac{2}{\pi}\right)^{n/2} \frac{1}{\Gamma(a)b^{a}} \int_{0}^{\infty} \theta^{(a+n/2)-1} e^{-(K+1/b)\theta} d\theta$$

$$= \left(\frac{2}{\pi}\right)^{n/2} \frac{1}{\Gamma(a)b^{a}} \int_{0}^{\infty} \left(\frac{\alpha}{K+1/b}\right)^{(a+n/2)-1} e^{-\alpha} \frac{d\alpha}{K+1/b}$$

$$= \left(\frac{2}{\pi}\right)^{n/2} \frac{1}{\Gamma(a)b^{a}} \left(\frac{1}{K+1/b}\right)^{a+n/2} \int_{0}^{\infty} \alpha^{(a+n/2)-1} e^{-\alpha} d\alpha$$

$$= \left(\frac{2}{\pi}\right)^{n/2} \frac{1}{\Gamma(a)b^{a}} \left(\frac{1}{K+1/b}\right)^{a+n/2} \Gamma(a+n/2).$$
(2.3)

Then the posterior distribution is

$$f_{\theta \mid \vec{\mathbf{x}}}(\theta \mid \vec{\mathbf{x}}) = \frac{f(\vec{\mathbf{x}} \mid \theta) \pi(\theta)}{m(\vec{\mathbf{x}})}$$

$$= \left( \left( \frac{2}{\pi} \right)^{n/2} \frac{\Gamma(a+n/2)}{\Gamma(a)b^a} \left( \frac{1}{K+1/b} \right)^{a+n/2} \right)^{-1} \left( \frac{2}{\pi} \right)^{n/2} \frac{1}{\Gamma(a)b^a} \theta^{(a+n/2)-1} e^{-(K+1/b)\theta}$$

$$= \frac{(\sum_{i=1}^n x_i^2 + 1/b)^{a+n/2}}{\Gamma(a+n/2)} \theta^{(a+n/2)-1} e^{-(\sum_{i=1}^n x_i^2 + 1/b)\theta}$$

$$= \pi \left( \theta \mid a' = a + n/2, \ b' = \frac{1}{\sum_{i=1}^n x_i^2 + 1/b} \right), \qquad (2.4)$$

for  $\theta > 0$ . Hence, since the posterior distribution is also a Gamma distribution, i.e.  $f_{\theta | \vec{\mathbf{x}}}(\theta | \vec{\mathbf{x}}) \in \Pi = \{ \text{Gamma}(a, b) : a, b > 0 \}$  for all  $\pi \in \Pi$ , for all  $f \in \mathcal{F}$  (specified by (2.2)) and for all  $x \in \mathbb{R}$ , we conclude that the Gamma prior is a conjugate prior for  $\theta$ .  $\Box$ 

We will calculate the Bayes estimator  $T_B$  such that  $BR(T_B) = \min_T BR(T)$  under the loss function  $L(\theta, t) = (t - \theta)^2$ , where  $BR(T) = \int_{\Theta} R(\theta, T) \pi(\theta) d\theta$ . From the theorem in class, this is equivalent to an estimator that minimises the posterior expected loss  $\mathbb{E}_{\theta \mid \vec{\mathbf{x}}}[L(\theta, T(\vec{\mathbf{x}}))]$  over all estimators, for each fixed  $\vec{\mathbf{x}} \in S$ . Then

$$\mathbb{E}_{\theta \mid \vec{\mathbf{x}}}[L(\theta, T(\vec{\mathbf{x}}))] = \mathbb{E}_{\theta \mid \vec{\mathbf{x}}}[(t-\theta)^2] = t^2 - 2\mathbb{E}_{\theta \mid \vec{\mathbf{x}}}[\theta]t + \mathbb{E}_{\theta \mid \vec{\mathbf{x}}}[\theta^2],$$
  
which is minimised at  $t = \mathbb{E}_{\theta \mid \vec{\mathbf{x}}}[\theta].$  (2.5)

We then appeal to the fact that for  $G \sim \pi(\theta | \alpha, \beta)$  we have  $\mathbb{E}[G] = \alpha \beta$ , so using (2.4) we have the Bayesian estimator of  $\theta$ 

$$T_B = \mathbb{E}_{\theta | \vec{\mathbf{x}}}[\theta] = \frac{a + n/2}{\sum_{i=1}^n x_i^2 + 1/b} \,.$$
(2.6)

## Part c)

Using all of the proceeding theorems, the Bayes estimator of  $g(\theta) = \sqrt{2/\pi} \theta^{1/2}$  under square error loss is the posterior expected value of  $g(\theta)$ , hence we can calculate (where C refers to the horrendous constants in the distribution Gamma(a', b') that we substitute in afterwards),

$$\mathbb{E}_{\theta|\vec{\mathbf{x}}}[g(\theta)] = \int_0^\infty \sqrt{\frac{2}{\pi}} \theta^{1/2} C \ \theta^{a+n/2-1} e^{-(\sum_{i=1}^n x_i^2 + 1/b)\theta} d\theta$$
  
=  $\sqrt{\frac{2}{\pi}} \frac{\Gamma(a+n/2+1/2)(\sum_{i=1}^n x_i^2 + 1/b)^{-(a+n/2+1/2)}}{\Gamma(a+n/2)(\sum_{i=1}^n x_i^2 + 1/b)^{-(a+n/2)}}$   
=  $\sqrt{\frac{2}{\pi}} \frac{\Gamma(a+(n+1)/2)}{\Gamma(a+n/2)\sqrt{\sum_{i=1}^n x_i^2 + 1/b}}.$  (2.7)

# Q3. Moment estimator and asymptotic distributions

Let  $X_1, \ldots, X_n$  be a random sample from the following discrete distribution:

$$P(X_1 = 1) = \frac{2(1-\theta)}{2-\theta}, \quad P(X_1 = 2) = \frac{\theta}{2-\theta},$$
 (3.1)

where  $\theta \in (0,1)$  is unknown. We can first obtain a moment estimator of  $\theta$  by equating means,

$$m_{1} = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \mathbb{E}[X_{1}] = (1) \frac{2(1-\theta)}{2-\theta} + (2) \frac{\theta}{2-\theta} = \frac{2}{2-\theta},$$
  
so  $\tilde{\theta} = 2 - \frac{2}{\overline{X}_{n}}$  (3.2)

is our method of moments estimator for this distribution. We can then use the delta method to find its asymptotic distribution. The central limit theorem tells us that

$$\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2)$$
 where  $\mu = \frac{2}{2 - \theta}$  and  $\sigma^2 = \frac{2\theta(1 - \theta)}{(2 - \theta)^2}$ . (3.3)

We can then set  $\tilde{\theta} = g(\overline{X}_n)$  where

$$g(y) = 2 - \frac{2}{y}$$
, so  $g'(y) = \frac{2}{y^2}$ . (3.4)

Then the delta method tells us

$$\sqrt{n}\left\{g(\overline{X}_n) - g(\mu)\right\} \xrightarrow{d} N(0, \sigma^2 g'(\mu)^2) = N\left(0, \frac{4\sigma^2}{\mu^4}\right) = N\left(0, \frac{\theta(1-\theta)(2-\theta)^2}{2}\right).$$
(3.5)

Hence, noting the easy calculation that  $g(\mu) = \theta$ , we arrive at the asymptotic distribution of  $\tilde{\theta}$ ,

$$\widetilde{\theta} = g(\overline{X}_n) \xrightarrow{d} N\left(\theta, \frac{\theta(1-\theta)(2-\theta)^2}{2n}\right).$$
(3.6)

## Q4. Test functions for Gamma

Let  $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \text{Gamma}(r, \lambda)$  where r > 0 is known and  $\lambda > 0$  is unknown. We use the shape-scale parametrisation with pdf

$$f(x|r,\lambda) = \frac{1}{\Gamma(r)\lambda^r} x^{r-1} e^{-x/\lambda} \mathbb{1}(x>0) \,. \tag{4.1}$$

We can easily calculate  $L(\lambda) = f(\vec{\mathbf{x}}|\lambda, r)$  as

$$L(\lambda) = \left(\frac{1}{\Gamma(r)\lambda^r}\right)^n \left(\prod_{i=1}^n x_i\right)^{r-1} \exp\left[-\frac{1}{\lambda}\sum_{i=1}^n x_i\right]$$
(4.2)

#### Part a)

We will first find a most powerful test (MPT) of size  $\alpha$  for testing

$$H_0: \lambda = \lambda_0 \quad \text{versus} \quad H_1: \lambda = \lambda_1,$$

$$(4.3)$$

where  $\lambda_0$  and  $\lambda_1$  are fixed real numbers satisfying  $0 < \lambda_0 < \lambda_1$ . We know from Neymann-Pearson's lemma that for a continuous jpdf we have a MPT of the form

$$\phi(\vec{\mathbf{x}}_n) = \begin{cases} 1 & \text{if } f(\vec{\mathbf{x}}|\lambda_1) > cf(\vec{\mathbf{x}}|\lambda_0) \\ 0 & \text{if } f(\vec{\mathbf{x}}|\lambda_1) \le cf(\vec{\mathbf{x}}|\lambda_0) \end{cases}$$
(4.4)

for some  $c \geq 0$  which we aim to calculate. We consider the first inequality and calculate

$$\left(\frac{1}{\Gamma(r)\lambda_{1}^{r}}\right)^{n} \left(\prod_{i=1}^{n} x_{i}\right)^{r-1} \exp\left[-\frac{1}{\lambda_{1}} \sum_{i=1}^{n} x_{i}\right] > c \left(\frac{1}{\Gamma(r)\lambda_{0}^{r}}\right)^{n} \left(\prod_{i=1}^{n} x_{i}\right)^{r-1} \exp\left[-\frac{1}{\lambda_{0}} \sum_{i=1}^{n} x_{i}\right],$$

$$\implies \lambda_{1}^{-nr} \exp\left[-\frac{1}{\lambda_{1}} \sum_{i=1}^{n} x_{i}\right] > c\lambda_{0}^{-nr} \exp\left[-\frac{1}{\lambda_{0}} \sum_{i=1}^{n} x_{i}\right],$$

$$\implies -nr \log \lambda_{1} - \frac{1}{\lambda_{1}} \sum_{i=1}^{n} x_{i} > \log c - nr \log \lambda_{0} - \frac{1}{\lambda_{0}} \sum_{i=1}^{n} x_{i},$$

$$\implies \left(\frac{1}{\lambda_{0}} - \frac{1}{\lambda_{1}}\right) \sum_{i=1}^{n} x_{i} > \log c + nr \log \frac{\lambda_{1}}{\lambda_{0}},$$

$$\implies \sum_{i=1}^{n} x_{i} > \frac{\lambda_{0}\lambda_{1}}{\lambda_{1} - \lambda_{0}} \left(\log c + nr \log \frac{\lambda_{1}}{\lambda_{0}}\right) = c_{1}.$$

$$(4.5)$$

In the last step we used the fact that  $\lambda_0 < \lambda_1$ , so we didn't have to flip the inequality. So our condition now becomes

$$\mathbb{E}_{\lambda_0}[\phi(\vec{\mathbf{x}}_n)] = P_{\lambda_0}\left(\sum_{i=1}^n X_i > c_1\right) = \alpha.$$
(4.6)

Then we know from elementary properties of the Gamma function that

$$\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}\left(\sum_{i=1}^{n} r_{i}, \lambda\right) = \operatorname{Gamma}(nr, \lambda), \qquad (4.7)$$

which then allows us to write, under  $H_0$ ,

$$\frac{2}{\lambda_0} \sum_{i=1}^n X_i \sim \operatorname{Gamma}(nr, 2) \sim \chi_{2nr}^2 \,. \tag{4.8}$$

So we can then write, where F(x; 2nr) is the CDF of  $\chi^2_{2nr}$ ,

$$\alpha = P_{\lambda_0} \left( \sum_{i=1}^n X_i > c_1 \right) = P_{\lambda_0} \left( \frac{2}{\lambda_0} \sum_{i=1}^n X_i > \frac{2c_1}{\lambda_0} \right)$$
$$= 1 - P_{\lambda_0} \left( \frac{2}{\lambda_0} \sum_{i=1}^n X_i \le \frac{2c_1}{\lambda_0} \right)$$
$$= 1 - F \left( \frac{2c_1}{\lambda_0}; 2nr \right).$$
(4.9)

Denoting  $\chi^2_{2nr}(k)$  as the kth quantile of a  $\chi^2_{2nr}$  distribution, we rearrange the above to see

$$c_1 = \frac{\lambda_0}{2} \chi_{2nr}^2 (1 - \alpha) \,. \tag{4.10}$$

Therefore we can write the most powerful test for this hypothesis test as

$$\phi(\vec{\mathbf{x}}_n) = \begin{cases} 1 & \text{if } \sum_{i=1}^n X_i > \frac{\lambda_0}{2} \chi_{2nr}^2 (1-\alpha) \\ 0 & \text{if } \sum_{i=1}^n X_i \le \frac{\lambda_0}{2} \chi_{2nr}^2 (1-\alpha) \end{cases}.$$
(4.11)

### Part b)

We now want to find a uniformly most powerful (UMP) test of size  $\alpha$  for testing

$$H_0: \lambda \le \lambda_0 \quad \text{versus} \quad H_1: \lambda > \lambda_0,$$

$$(4.12)$$

where  $\lambda_0 \in \mathbb{R}^+$  is fixed. Letting  $(0, \lambda_0] = \Theta_0 \subset \Theta = (0, \infty)$ , we see that we can apply the theorem from lectures. It is clear that the MPT in (4.11) is not dependent on  $\lambda_1 \notin \Theta_0$ , so we just need to check that  $\max_{\lambda \in \Theta_0} \mathbb{E}_{\lambda}[\phi(\vec{\mathbf{x}}_n)] = \alpha$ . We see that

$$\mathbb{E}_{\lambda}[\phi(\vec{\mathbf{x}}_{n})] = P_{\lambda}\left(\sum_{i=1}^{n} X_{i} > \frac{\lambda_{0}}{2}\chi_{2nr}^{2}(1-\alpha)\right)$$
$$= P_{\lambda}\left(\frac{2}{\lambda}\sum_{i=1}^{n} X_{i} > \frac{\lambda_{0}}{\lambda}\chi_{2nr}^{2}(1-\alpha)\right)$$
$$= P_{\lambda}\left(\chi_{2nr}^{2} > \frac{\lambda_{0}}{\lambda}\chi_{2nr}^{2}(1-\alpha)\right)$$
(4.13)

which, viewed as a function of  $\lambda$  is increasing, meaning that the maximum occurs at the boundary,  $\lambda = \lambda_0$ . Hence,

$$\max_{\lambda \in \Theta_0} \mathbb{E}_{\lambda}[\phi(\vec{\mathbf{x}}_n)] = \mathbb{E}_{\lambda_0}[\phi(\vec{\mathbf{x}}_n)] = \alpha \,. \tag{4.14}$$

Therefore, by this theorem we have that (4.11) is a UMP test for this hypothesis.

## Part c)

We will now find a likelihood ratio test of size  $\alpha$  for testing

$$H_0: \lambda = \lambda_0 \quad \text{versus} \quad H_1: \lambda \neq \lambda_0,$$

$$(4.15)$$

where  $\lambda_0 > 0$  is a fixed real number. Under  $H_0$ , the MLE of  $\lambda$  is  $\lambda_0$ . For the domain  $\Theta$ , we can calculate the MLE (where r is known, hence a fixed constant):

$$L(\lambda | \vec{\mathbf{x}}_n) = \left(\frac{1}{\Gamma(r)\lambda^r}\right)^n \left(\prod_{i=1}^n x_i\right)^{r-1} e^{-\sum_{i=1}^n x_i/\lambda} \mathbb{1}(x_{(1)} > 0),$$
  
so  $\log L = -n \log \Gamma(r) - rn \log \lambda + (r-1) \left(\sum_{i=1}^n \log x_i\right) - \frac{1}{\lambda} \sum_{i=1}^n x_i,$   
so setting  $\frac{\partial \log L}{\partial \lambda} = -\frac{rn}{\lambda} + \frac{1}{\lambda^2} \sum_{i=1}^n x_i = 0$   
we have  $\hat{\lambda} = \frac{1}{rn} \sum_{i=1}^n x_i = \frac{1}{r} \overline{X}_n.$  (4.16)

Hence, we have our LRTS,

$$\lambda(\vec{\mathbf{x}}_n) = \frac{L(\lambda_0 | \vec{\mathbf{x}}_n)}{L(\hat{\lambda} | \vec{\mathbf{x}}_n)} = \frac{\left(\frac{1}{\Gamma(r)\lambda_0^r}\right)^n \left(\prod_{i=1}^n x_i\right)^{r-1} e^{-\sum_{i=1}^n x_i/\lambda_0} \mathbbm{1}(x_{(1)} > 0)}{\left(\frac{1}{\Gamma(r)\hat{\lambda}^r}\right)^n \left(\prod_{i=1}^n x_i\right)^{r-1} e^{-\sum_{i=1}^n x_i/\hat{\lambda}} \mathbbm{1}(x_{(1)} > 0)}$$
$$= \left(\frac{\lambda_0}{\hat{\lambda}}\right)^{-nr} e^{nr} e^{-\frac{n}{\lambda_0} \overline{X}_n}.$$
(4.17)

Our likelihood ratio test is then defined as

$$\phi(\vec{\mathbf{x}}_n) = \begin{cases} 1 & \text{if } \lambda(\vec{\mathbf{x}}_n) < c \\ 0 & \text{if } \lambda(\vec{\mathbf{x}}_n) \ge c \end{cases},$$
(4.18)

which satisfies  $\mathbb{E}_{\lambda_0}[\phi(\vec{\mathbf{x}}_n)] = P_{\lambda_0}(\lambda(\vec{\mathbf{x}}_n) < c) = \alpha$ . We first find a better condition on our LRTS (where  $c_1 > 0$  is another constant)

$$\lambda(\vec{\mathbf{x}}_{n}) < c$$

$$\implies \qquad \left(\frac{\lambda_{0}}{\hat{\lambda}}\right)^{-nr} e^{nr} e^{-\frac{n}{\lambda_{0}}\overline{X}_{n}} < c$$

$$\implies \qquad \left(\frac{\lambda_{0}}{\hat{\lambda}}\right)^{-nr} e^{-\frac{n}{\lambda_{0}}\overline{X}_{n}} < c_{1}$$

$$\implies \qquad \left(\frac{\sum_{i=1}^{n} x_{i}}{nr\lambda_{0}}\right)^{nr} e^{-\frac{1}{\lambda_{0}}\sum_{i=1}^{n} x_{i}} < c_{1}. \qquad (4.19)$$

As in part a), we can then define

$$Y = \frac{2}{\lambda_0} \sum_{i=1}^{n} X_i \sim \chi_{2nr}^2$$
(4.20)

where our inequality (4.19) now becomes

$$\left(\frac{Y}{2nr}\right)^{nr} e^{-Y/2} < c_1$$

$$\implies \qquad Y^{nr} e^{-Y/2} < c_2, \qquad (4.21)$$

for some constant  $c_2 > 0$ , meaning we can now define

$$g(y) = y^{nr} e^{-y/2} (4.22)$$

which satisfies  $P_{\lambda_0}(g(Y) < c_2) = \alpha$ .



Figure 4.1: Plot of g(y) displaying values for which inequality holds.

Using Figure 4.1 as a guide, we can translate our  $\alpha$  condition into

$$P_{\lambda_0}(0 < Y < y_1) + P_{\lambda_0}(Y > y_2) = \alpha, \quad \text{where } g(y_1) = g(y_2) = c_2.$$
(4.23)  
Then since  $Y \sim \chi^2_{2nr}$ , we can define quantiles  $q_1, q_2 > 0$  where

 $P_{\lambda_0}(0 < Y < y_1) = q_1$  and  $P_{\lambda_0}(Y \le y_2) = q_2$  such that  $1 + q_1 - q_2 = \alpha$ . (4.24) Hence we can now write

$$y_1 = \chi^2_{2nr}(q_1)$$
 and  $y_2 = \chi^2_{2nr}(1 - \alpha + q_1)$ . (4.25)

Therefore, after much effort, our acceptance and rejection regions are

$$A_{\phi}(\lambda_0) = \left[\frac{\lambda_0}{2}\chi_{2nr}^2(q_1), \frac{\lambda_0}{2}\chi_{2nr}^2(1-\alpha+q_1)\right]$$
(4.26)

$$R_{\phi}(\lambda_0) = A(\lambda_0)^c = \left(0, \frac{\lambda_0}{2}\chi_{2nr}^2(q_1)\right) \cup \left(\frac{\lambda_0}{2}\chi_{2nr}^2(1-\alpha+q_1), \infty\right), \quad (4.27)$$

meaning our LRT of size  $\alpha$  is

$$\phi(\vec{\mathbf{x}}_n) = \begin{cases} 1 & \text{if } \sum_{i=1}^n X_i \in R(\lambda_0) \\ 0 & \text{if } \sum_{i=1}^n X_i \in A(\lambda_0) \end{cases}.$$
(4.28)

# Q5. Another UMP Test

Let  $X_1, \ldots, X_n$  be a random sample from a population with pdf

$$f(x|\theta) = \frac{x^{1/\theta - 1}}{\theta} \mathbb{1}(0 < x < 1), \qquad (5.1)$$

where  $\theta \in \Theta = (0, \infty)$ . We want to find a UMP test for testing

$$H_0: \lambda \le \lambda_0 \quad \text{versus} \quad H_1: \lambda > \lambda_0 ,$$
 (5.2)

where  $\theta_0 \in \Theta$  is fixed. We start by finding a MPT for

$$H_0: \theta = \theta_0 \quad \text{versus} \quad H_1: \theta = \theta_1,$$
 (5.3)

where  $\theta_1 > \theta_0$ . We note that the joint pdf of f is in an exponential family since we can write

$$f(\vec{\mathbf{x}}|\theta) = \left(\frac{1}{\theta}\right)^n \left(\prod_{i=1}^n x_i\right)^{1/\theta - 1} \prod_{i=1}^n \mathbb{1}(0 < x_i < 1)$$
$$= \underbrace{\theta^{-n}}_{c(\theta)} \underbrace{\prod_{i=1}^n \mathbb{1}(0 < x_i < 1)}_{h(\vec{\mathbf{x}}_n)} \exp\left[\underbrace{\underbrace{(1 - 1/\theta)}_{w(\theta)} \underbrace{\left(-\sum_{i=1}^n \log x_i\right)}_{t(\vec{\mathbf{x}}_n)}\right]. \quad (5.4)$$

Since  $w(\theta)$  is non decreasing in  $\theta$  on  $\Theta$ , we see that this family of pdf's has a monotone likelihood ratio in  $t(\vec{\mathbf{x}}_n)$  as labelled above. By the theorem in lectures, this tells us we have a UMP test of size  $\alpha$  as

$$\phi(\vec{\mathbf{x}}_n) = \begin{cases} 1 & \text{if } -\sum_{i=1}^n \log x_i > c \\ 0 & \text{if } -\sum_{i=1}^n \log x_i \le c \end{cases}$$
(5.5)

We then will need to find the distribution of  $t(\vec{\mathbf{x}}_n)$ , so we start by finding the distribution of  $Y = -\log X$ :

$$F_{Y}(y) = P(-\log X \le y) = P(X > e^{-y}) = 1 - \int_{0}^{e^{-y}} \frac{1}{\theta} t^{1/\theta - 1} dt = 1 - [t^{1/\theta}]_{0}^{e^{-y}} = 1 - e^{-y/\theta},$$
(5.6)

which tells us that  $Y \sim \text{Exp}(1/\theta)$ , hence we have

$$t(\vec{\mathbf{x}}_n) = -\sum_{i=1}^n \log x_i \sim \operatorname{Gamma}(n,\theta), \qquad (5.7)$$

where Gamma has the shape-scale distribution as in Q4, hence we can use the same facts about chi-square in our calculations. So to determine c, we set

$$\alpha = \mathbb{E}_{\theta_0}[\phi(\vec{\mathbf{x}}_n)] = P_{\theta_0}(t(\vec{\mathbf{x}}_n) > c)$$
$$= P_{\theta_0}\left(\frac{2}{\theta_0}t(\vec{\mathbf{x}}_n) > \frac{2}{\theta_0}c\right)$$
$$= P_{\theta_0}\left(\chi_{2n}^2 > \frac{2}{\theta_0}c\right).$$
(5.8)

Using the exact same arguments and notation as in Q4, we arrive at our UMP test for this hypothesis test,

$$\phi(\vec{\mathbf{x}}_n) = \begin{cases} 1 & \text{if } \sum_{i=1}^n X_i > \frac{\theta_0}{2} \chi_{2n}^2 (1-\alpha) \\ 0 & \text{if } \sum_{i=1}^n X_i \le \frac{\theta_0}{2} \chi_{2n}^2 (1-\alpha) \end{cases}$$
(5.9)

# Q8. Confidence intervals

## Part a)

To find a  $1 - \alpha$  confidence set for  $\lambda$  we can invert the likelihood ratio test established in question 3. We had an acceptance region of

$$A_{\phi}(\lambda_{0}) = \left\{ \vec{\mathbf{x}}_{n} : \frac{\lambda_{0}}{2} \chi_{2nr}^{2}(q_{1}) \leq \sum_{i=1}^{n} x_{i} \leq \frac{\lambda_{0}}{2} \chi_{2nr}^{2}(1-\alpha+q_{1}) \right\}$$
$$= \left\{ \vec{\mathbf{x}}_{n} : \frac{2}{\chi_{2nr}^{2}(1-\alpha+q_{1})} \sum_{i=1}^{n} x_{i} \leq \lambda_{0} \leq \frac{2}{\chi_{2nr}^{2}(q_{1})} \sum_{i=1}^{n} x_{i} \right\}.$$
(8.1)

Hence our  $1 - \alpha$  confidence region for  $\lambda$  is

$$C(\vec{\mathbf{x}}_n) = \left\{ \lambda : \frac{2}{\chi_{2nr}^2 (1 - \alpha + q_1)} \sum_{i=1}^n x_i \le \lambda \le \frac{2}{\chi_{2nr}^2 (q_1)} \sum_{i=1}^n x_i \right\}.$$
 (8.2)

## Part b)

Throughout this question we have met the location-scale based statistic

$$Q(\vec{\mathbf{x}}_n, \lambda) = \frac{2}{\lambda_0} \sum_{i=1}^n X_i \sim \chi_{2nr}^2, \qquad (8.3)$$

and so since Q does *not* depend on  $\lambda$ , we see that this is a well defined pivotal quantity. Hence we can define  $c_1, c_2 > 0$  such that

$$P_{\lambda}(c_1 \le Q \le c_2) = 1 - \alpha \,. \tag{8.4}$$

Setting it to be an equi-tail confidence region then gives us

$$P_{\lambda}(Q \le c_1) = P_{\lambda}(Q \ge c_2) = \alpha/2, \qquad (8.5)$$

hence meaning we have

$$c_1 = \chi^2_{2nr}(\alpha/2)$$
 and  $c_2 = \chi^2_{2nr}(1 - \alpha/2)$ . (8.6)

Therefore our  $1 - \alpha$  confidence region for  $\lambda$  based on the pivot Q is

$$C(\vec{\mathbf{x}}_n) = \left\{ \lambda : \frac{2}{\chi_{2nr}^2(\alpha/2)} \sum_{i=1}^n x_i \le \lambda \le \frac{2}{\chi_{2nr}^2(1-\alpha/2)} \sum_{i=1}^n x_i \right\}.$$
 (8.7)

# Q9. More likelihood ratio tests

Let  $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} N(\mu, \sigma^2)$ , where  $\mu \in \mathbb{R}$  and  $\sigma^2 > 0$  are both unknown.

## Part a)

We start by finding a likelihood ratio test of size  $\alpha$  for testing

$$H_0: \mu = \mu_0$$
 versus  $H_1: \mu \neq \mu_0$ 

where  $\mu_0 \in \mathbb{R}$  is fixed. Hence we define

$$\Theta_{0} = \{(\mu, \sigma^{2}) : \mu = \mu_{0}, \ \sigma^{2} > 0\} \Theta = \{(\mu, \sigma^{2}) : \mu \in \mathbb{R}, \ \sigma^{2} > 0\}.$$
(9.1)

We begin by calculating the MLE of  $\theta = (\mu, \sigma^2)$  over the two sets to determine the LRTS. The likelihood function for a normal distribution is

$$L(\mu, \sigma^2 | \vec{\mathbf{x}}_n) = (2\pi)^{-\frac{n}{2}} (\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right], \qquad (9.2)$$

and then we can differentiate  $\log L$  to see

$$\frac{\partial \log L}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu), \qquad \frac{\partial \log L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2.$$
(9.3)

Setting both derivatives to 0 we see that the MLE for  $\theta$  over  $\Theta$  is, where  $\hat{\theta} = (\hat{\mu}, \hat{\sigma}^2)$ ,

$$\hat{\mu} = \overline{x}_n \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 \,. \tag{9.4}$$

By contrast, over the set  $\Theta_0$  we have  $\hat{\theta}_0 = (\hat{\mu}_0, \hat{\sigma}_0^2)$  where

$$\hat{\mu}_0 = \mu_0 \qquad \hat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2 \,.$$
(9.5)

Therefore we calculate our likelihood ratio test statistic as

$$\lambda(\vec{\mathbf{x}}_n) = \frac{L(\hat{\theta}_0 | \vec{\mathbf{x}}_n)}{L(\hat{\theta} | \vec{\mathbf{x}}_n)} = \frac{(2\pi)^{-\frac{n}{2}} \left(\frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2\right)^{-\frac{n}{2}} \exp\left[-\frac{\sum_{i=1}^n (x_i - \mu_0)^2}{2\frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2}\right]}{(2\pi)^{-\frac{n}{2}} \left(\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2\right)^{-\frac{n}{2}} \exp\left[-\frac{\sum_{i=1}^n (x_i - \overline{x}_n)^2}{2\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2}\right]} \\ = \left(\frac{\sum_{i=1}^n (x_i - \mu_0)^2}{\sum_{i=1}^n (x_i - \overline{x}_n)^2}\right)^{-\frac{n}{2}}$$
(9.6)

So, the LRT of size  $\alpha$  is

$$\phi(\vec{\mathbf{x}}_n) = \begin{cases} 1 & \text{if } \lambda(\vec{\mathbf{x}}_n) < c \\ 0 & \text{if } \lambda(\vec{\mathbf{x}}_n) \ge c \end{cases},$$
(9.7)

where c satisfies  $P_{\mu_0}(\lambda(\vec{\mathbf{x}}_n) < c) = \alpha$  and since  $\sigma^2$  is also unknown, this has to hold for all  $\sigma^2 \in \Theta$  too. Noting the following identity derived in the first assignment,

$$\sum_{i=1}^{n} (x_i - \mu_0)^2 = \sum_{i=1}^{n} (x_i - \overline{x}_n)^2 + \sum_{i=1}^{n} (\overline{x}_n - \mu_0)^2 = \sum_{i=1}^{n} (x_i - \overline{x}_n)^2 + n(\overline{x}_n - \mu_0)^2,$$
(9.8)

we can then calculate, for constants  $c_1, c_2 > 0$ 

We then note that the denominator term looks very close to the sample variance, hence implying that we should multiply by (n-1) and then take the square root to get a familiar distribution. Hence, we have for  $c_3 > 0$ 

$$\implies \qquad \frac{\sqrt{n}|\overline{x}_n - \mu_0|}{\sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x}_n)^2}} > c_3. \qquad (9.10)$$

We can then define the new statistic under the null hypothesis, where  $S_n^2$  is the sample variance and  $t_{n-1}$  is the Student's t-distribution with n-1 degrees of freedom,

$$T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{S_n} \sim t_{n-1}, \qquad (9.11)$$

and we see that our condition on the LRTS becomes

$$P_{\mu_0}(|T| > c_3) = 1 - P_{\mu_0}(|T| \le c_3) = \alpha , \qquad (9.12)$$

hence indicating that we should choose  $c_3 = t_{n-1}(1 - \alpha/2)$ , the  $(1 - \alpha/2)$ -quantile of  $t_{n-1}$ . Therefore, the LRT of size  $\alpha$  for this hypothesis testing scenario is

$$\phi(\vec{\mathbf{x}}_n) = \begin{cases} 1 & \text{if } |T| > t_{n-1}(1 - \alpha/2) \\ 0 & \text{if } |T| \le t_{n-1}(1 - \alpha/2) \end{cases}$$
(9.13)

From part a), our acceptance region for this LRT is

$$A_{\phi}(\theta_{0}) = \left\{ \vec{\mathbf{x}}_{n} : \left| \frac{\sqrt{n}(\overline{X}_{n} - \mu_{0})}{S_{n}} \right| \leq t_{n-1}(1 - \alpha/2) \right\}$$
$$= \left\{ \vec{\mathbf{x}}_{n} : \left| \overline{X}_{n} - \mu_{0} \right| \leq \frac{S_{n}t_{n-1}(1 - \alpha/2)}{\sqrt{n}} \right\}$$
$$= \left\{ \vec{\mathbf{x}}_{n} : -\frac{S_{n}t_{n-1}(1 - \alpha/2)}{\sqrt{n}} \leq \overline{X}_{n} - \mu_{0} \leq \frac{S_{n}t_{n-1}(1 - \alpha/2)}{\sqrt{n}} \right\}$$
$$= \left\{ \vec{\mathbf{x}}_{n} : \overline{X}_{n} - \frac{S_{n}t_{n-1}(1 - \alpha/2)}{\sqrt{n}} \leq \mu_{0} \leq \overline{X}_{n} + \frac{S_{n}t_{n-1}(1 - \alpha/2)}{\sqrt{n}} \right\}. \quad (9.14)$$

Therefore, our  $1 - \alpha$  confidence set for  $\mu$  is

$$C(\boldsymbol{X}_n) = \left[\overline{X}_n - \frac{S_n t_{n-1}(1 - \alpha/2)}{\sqrt{n}}, \overline{X}_n + \frac{S_n t_{n-1}(1 - \alpha/2)}{\sqrt{n}}\right].$$
(9.15)

We note that this confidence set is indeed an interval.

#### Part c)

We see that along the way we have already found our pivot quantity, namely T, whose distribution does not depend on  $\mu$ . For a  $1 - \alpha$  equi-tail confidence set, in setting  $P_{\mu}(c_1 \leq T \leq c_2) = 1 - \alpha$  we have the same calculation as in (8.4) and (8.5), hence giving us

$$c_1 = t_{n-1}(\alpha/2)$$
 and  $c_2 = t_{n-1}(1 - \alpha/2)$ . (9.16)

Therefore our  $1 - \alpha$  confidence region for  $\mu$  based on the pivot T is

$$C(\boldsymbol{X}_n) = \left[\overline{X}_n - \frac{S_n t_{n-1}(1 - \alpha/2)}{\sqrt{n}}, \overline{X}_n - \frac{S_n t_{n-1}(\alpha/2)}{\sqrt{n}}\right].$$
 (9.17)

## Q10. Pivoting on a CDF

Let  $X_1, \ldots, X_n$  be a random sample from a population with pdf

$$f(x|\theta) = \frac{3}{\theta^3} x^2 \quad \mathbb{1}(0 < x < \theta),$$
 (10.1)

where  $\theta > 0$  unknown. An elementary calculation shows that the cdf is

$$F_X(x|\theta) = \begin{cases} 0 & \text{if } x < 0\\ \left(\frac{x}{\theta}\right)^3 & \text{if } 0 \le x \le \theta \\ 1 & \text{if } x > \theta \end{cases}$$
(10.2)

## Part a)

We will first find a  $1 - \alpha$  confidence interval for  $\theta$  by pivoting the cdf of  $X_{(n)} = \max\{X_1, \ldots, X_n\}$ . We first calculate the cdf of  $X_{(n)}$ :

$$F_{X_{(n)}}(x|\theta) = P(X_{(n)} \le x) = P(\max\{X_1, \dots, X_n\} \le x)$$
  
$$= P(X_1 \le y, \dots, X_n \le x)$$
  
$$= \prod_{i=1}^n P(X_i \le x) = \prod_{i=1}^n F_{X_i}(x|\theta)$$
  
$$= \begin{cases} 0 & \text{if } x < 0 \\ \left(\frac{x}{\theta}\right)^{3n} & \text{if } 0 \le x \le \theta \\ 1 & \text{if } x > \theta \end{cases}$$
(10.3)

Therefore, in defining the random variable  $F_{X_{(n)}} \sim \text{Unif}(0,1)$ , we have a pivotal quantity. We then note that for any fixed value of x,  $F_{X_{(n)}}(x|\theta)$  is a decreasing function of  $\theta$ . Hence by the theorem in class we define  $C(\mathbf{X}_n) = [\theta_L(x), \theta_U(x)]$  by

$$F_{X_{(n)}}(x|\theta_U(x)) = \alpha_1$$
 and  $F_{X_{(n)}}(x|\theta_L(x)) = 1 - \alpha_2$ , (10.4)

where  $\alpha_1, \alpha_2 < 1$  satisfy  $\alpha_1 + \alpha_2 = \alpha$ . We will then assume an equi-tail confidence interval for simplicity, setting  $\alpha_1 = \alpha_2 = \alpha/2$ . Then we solve (where we note  $0 < \alpha/2 < 1$  when solving),

$$\left(\frac{x}{\theta_U(x)}\right)^{3n} = \frac{\alpha}{2}, \qquad \text{so} \quad \theta_U(x) = \left(\frac{2}{\alpha}\right)^{1/3n} x, \qquad (10.5)$$

and similarly 
$$\left(\frac{x}{\theta_L(x)}\right)^{3n} = \frac{2-\alpha}{2}$$
, so  $\theta_L(x) = \left(\frac{2}{2-\alpha}\right)^{1/3n} x$ . (10.6)

Therefore, our  $1 - \alpha$  confidence interval for  $\theta$  is

$$C(X_{(n)}) = \left\{ \theta : \left(\frac{2}{2-\alpha}\right)^{1/3n} X_{(n)} \le \theta \le \left(\frac{2}{\alpha}\right)^{1/3n} X_{(n)} \right\}.$$
 (10.7)

This time we construct a confidence interval based on a pivotal quantity. We have already seen that  $X_{(n)}$  has a favourable distribution, so appealing to the fact that we can create pivots from a location-scale family, we can define a new pivotal quantity  $Y = X_{(n)}/\theta$ . We verify that it is indeed a pivot:

$$P(Y \le y) = P(X_{(n)}/\theta \le y) = P(X_{(n)} \le \theta y) = \begin{cases} 0 & \text{if } x < 0\\ \left(\frac{\theta y}{\theta}\right)^{3n} & \text{if } 0 \le \theta y \le \theta\\ 1 & \text{if } \theta y > \theta \end{cases}$$
$$= \begin{cases} 0 & \text{if } x < 0\\ y^{3n} & \text{if } 0 \le y \le 1\\ 1 & \text{if } y > 1 \end{cases}$$
(10.8)

We can hence clearly see that the distribution of Y is *independent of*  $\theta$ , meaning it is a well defined pivot. We then define  $c_1, c_2 > 0$  such that

$$P_{\theta}(c_1 \le Y \le c_2) = 1 - \alpha \,,$$

and once again using an equi-tail confidence region we set

$$P_{\theta}(Y \le c_1) = P_{\theta}(Y \ge c_2) = \alpha/2.$$

Respectively, this yields

$$c_1 = \left(\frac{\alpha}{2}\right)^{1/3n}$$
 and  $c_2 = \left(\frac{2-\alpha}{2}\right)^{1/3n}$ . (10.9)

So we can now write our confidence interval as

$$C(Y) = \left\{ \theta : \left(\frac{\alpha}{2}\right)^{1/3n} \le \frac{X_{(n)}}{\theta} \le \left(\frac{2-\alpha}{2}\right)^{1/3n} \right\}$$
$$= \left\{ \theta : \left(\frac{2}{2-\alpha}\right)^{1/3n} X_{(n)} \le \theta \le \left(\frac{\alpha}{2}\right)^{1/3n} X_{(n)} \right\}$$
(10.10)

As anticipated, this is the same interval that we arrived at in part a). Hallelujah!

## Q11. Evaluation of confidence intervals

Let  $X_1, \ldots, X_n$  be a random sample from a population with pdf

$$f(x|\theta) = \theta x^{\theta - 1} \, \mathbb{1}(0 < x < 1) \,, \tag{11.1}$$

where  $\theta \in \Theta = (0, \infty)$ , with cdf

$$F(x|\theta) = \begin{cases} 0 & \text{if } x < 0\\ x^{\theta} & \text{if } 0 \le y \le 1\\ 1 & \text{if } y > 1 \end{cases}$$
(11.2)

#### Part a)

We will find a  $1 - \alpha$  confidence interval for  $\theta$  based on the statistic

 $T(\mathbf{X}_n) = -\sum_{i=1}^n \log X_i$ . By boxing smart, we notice that this is actually the same distribution as in Q5, but with  $\theta_{Q11} = 1/\theta_{Q5}$ . Hence we can use the exact same calculation as in (5.6) and (5.7) to get

$$T(\mathbf{X}_n) \sim \text{Gamma}(n, 1/\theta)$$
. (11.3)

Hence we can scale this statistic to produce our pivot,

$$T' = 2\theta T(\boldsymbol{X}_n) = \operatorname{Gamma}(n, 2) \sim \chi_{2n}^2.$$
(11.4)

We then find  $c_1, c_2 > 0$  such that  $P_{\theta}(c_1 \leq 2\theta T(\mathbf{X}_n) \leq c_2) = 1 - \alpha$ . As in question 8b), setting an equi-tail once again, we have

$$c_1 = \chi^2_{2n}(\alpha/2)$$
 and  $c_2 = \chi^2_{2n}(1 - \alpha/2)$ . (11.5)

Therefore, our  $1 - \alpha$  confidence interval is

$$C(\mathbf{X}_n) = \left\{ \theta : \frac{\chi_{2n}^2(\alpha/2)}{2(-\sum_{i=1}^n \log X_i)} \le \theta \le \frac{\chi_{2n}^2(1-\alpha/2)}{2(-\sum_{i=1}^n \log X_i)} \right\}.$$
 (11.6)

#### Part b)

We now want to find the shortest  $1 - \alpha$  interval for  $\theta$  of the form [a/T, b/T], with T as before and  $a \leq b$  are real numbers. We can calculate the confidence coefficient as follows:

$$P_{\theta}\left(\frac{a}{T} \le \theta \le \frac{b}{T}\right) = P_{\theta}\left(2a \le 2\theta T \le 2b\right)$$
$$= P\left(2\theta T \le 2b\right) - P\left(2\theta T \le 2a\right)$$
$$= F_{T'}(2b) - F_{T'}(2a). \tag{11.7}$$

Noting that we have  $\mathbb{E}_{\theta}[b/T - a/T] = (b - a)\mathbb{E}_{\theta}[1/T]$ , this suggests we want to minimise b - a subject to

$$F_{T'}(2b) - F_{T'}(2a) = 1 - \alpha, \qquad (11.8)$$

hence we can rearrange to find

$$a = \frac{1}{2} F_{T'}^{-1} \left[ F_{T'}(2b) - (1 - \alpha) \right] .$$
(11.9)

We then note for an arbitrary bijective function  $g(x) : \mathbb{R} \to [0, 1]$ , we have

$$\frac{dg^{-1}(x)}{dx} = \frac{1}{g'(g^{-1}(x))}.$$
(11.10)

We see that  $F_{T'}^{-1}$  satisfies these requirements, hence we can set

$$h(b) = b - \frac{1}{2} F_{T'}^{-1} \left[ F_{T'}(2b) - (1 - \alpha) \right], \qquad (11.11)$$

we can then calculate the derivative as follows:

$$\frac{dh}{db} = 1 - \frac{f_{T'}(2b)}{f_{T'}(F_{T'}^{-1}[F_{T'}(2b) - (1-\alpha)])}.$$
(11.12)

Hence, the value of b that minimises h satisfies

$$f_{T'}(2b) = f_{T'}(F_{T'}^{-1}[F_{T'}(2b) - (1 - \alpha)]).$$
(11.13)

Unfortunately,  $f_{T'}(t)$  is not actually a bijection, meaning it is difficult to progress further from here.

Whilst the mathematics of this calculation are quite awful to look at, there is a relatively simple intuitive explanation for what we seek. We know from lectures that for a unimodal pdf f(x), if we can find an interval [a, b] such that i)  $\int_a^b f(x)dx = 1 - \alpha$ , ii) f(a) = f(b) > 0 and iii) a and b fall either side of the mode of f, then [a, b] is the shortest interval that we seek. Clearly this theorem is telling us that the shortest interval occurs around the region of highest 'mass', being the mode.

Drawing a visual picture, we can imagine a line y = k that begins tangential to the mode on f. As we slowly reduce the value of k (move the line down), hence yielding intercepts of f(a) = f(b) on either side of the mode, the total enclosed integral will be some value M. Our shortest interval is then found by finding the particular value of k such that  $M = 1 - \alpha$ . With suitable numerical calculation, this can be easily determined using such constraints.

#### Part c)

Suppose  $\theta$  has the prior  $\pi(\theta|r,\lambda)$  as Gamma $(r,\lambda)$  with the same pdf as in (2.2), where both r and  $\lambda$  are known. We want to find a  $1 - \alpha$  Bayes highest posterior density (HPD) credible set for  $\theta$ . We have the posterior distribution as:

$$f_{\theta \mid \vec{\mathbf{x}}_{n}}(\theta \mid \vec{\mathbf{x}}_{n}) \propto f(\vec{\mathbf{x}}_{n} \mid \theta) \pi(\theta \mid r, \lambda)$$

$$\propto \theta^{n} \left(\prod_{i=1}^{n} x_{i}\right)^{\theta-1} \frac{1}{\Gamma(r)\lambda^{r}} \theta^{r-1} e^{-\theta/\lambda} \mathbb{1}(\theta > 0)$$

$$\propto \theta^{n+r-1} \exp\left[-\theta \left(\frac{1}{\lambda} - \sum_{i=1}^{n} \log x_{i}\right)\right] \mathbb{1}(\theta > 0), \qquad (11.14)$$

meaning we can write

$$f_{\theta | \vec{\mathbf{x}}_n}(\theta | \vec{\mathbf{x}}_n) \sim \text{Gamma}\left(n + r, \left[\frac{1}{\lambda} - \sum_{i=1}^n \log x_i\right]^{-1}\right).$$
 (11.15)

Then, we know from lectures that a  $1 - \alpha$  Bayes HPD credible set for  $\theta$  has the form

$$C(\vec{\mathbf{x}}_n) = \left\{ \theta > 0 : f_{\theta \mid \vec{\mathbf{x}}_n}(\theta \mid \vec{\mathbf{x}}_n) \ge k \right\} , \qquad (11.16)$$

for some k > 0 such that

$$P(\theta \in C(\vec{\mathbf{X}}_n) | \vec{\mathbf{X}}_n = \vec{\mathbf{x}}_n) = 1 - \alpha.$$
(11.17)

Since Gamma is a unimodal distribution, we know that this credible set will take the form of an interval,

$$C(\vec{\mathbf{X}}_n) = \left[\theta_L(\vec{\mathbf{X}}_n), \theta_U(\vec{\mathbf{X}}_n)\right], \qquad (11.18)$$

with the additional constraint from (11.16) giving us

$$f_{\theta | \vec{\mathbf{x}}_n}(\theta_L(\vec{\mathbf{X}}_n) | \vec{\mathbf{x}}_n) = f_{\theta | \vec{\mathbf{x}}_n}(\theta_U(\vec{\mathbf{X}}_n) | \vec{\mathbf{x}}_n) = k$$
  
so  $\theta_L^{n+r-1} \exp\left[-\theta_L\left(\frac{1}{\lambda} - \sum_{i=1}^n \log x_i\right)\right] = \theta_U^{n+r-1} \exp\left[-\theta_U\left(\frac{1}{\lambda} - \sum_{i=1}^n \log x_i\right)\right].$  (11.19)

As long as all of these constraints are satisfied, we have found our HPD credible set of level  $1 - \alpha$  for  $\theta$  - in order to gain more specific results we would need the assistance of numerical calculations.