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Q1. Loss functions

Let X1, . . . , Xn
i.i.d.∼ Uniform(0, θ), θ ∈ Θ = (0,∞). Consider estimators of θ of the

form Tb = bX(n), where X(n) = max(X1, . . . , Xn).

We first note the standard fact that the maximum order statistic is distributed
as

FX(n)
(x) =

n∏
i=1

P (Xi ≤ x) = FX1(x)n =


0 if x < 0(
x
θ

)n
if 0 ≤ x ≤ θ

1 if x > θ

(1.1)

with pdf fX(n)
(x) =

nxn−1

θn
1(0 ≤ x ≤ θ) . (1.2)

Hence we can calculate

E[X(n)] =

∫ θ

0

x
n

θn
xn−1dx =

n

n+ 1
θ , (1.3)

and E[X2
(n)] =

∫ θ

0

x2 n

θn
xn−1dx =

n

n+ 2
θ2 . (1.4)

Part a)

We will use the loss function L(θ, t) = (t−θ)2 to calculate the risk function R(θ, Tb).
We can calculate

R(θ, Tb) = E[L(θ, Tb)] = E[(bX(n) − θ)2]

= b2E[X2
(n)]− 2bθE[X(n)] + θ2

= θ2

(
n

n+ 2
b2 − 2n

n+ 1
b+ 1

)
︸ ︷︷ ︸

f(b)

. (1.5)

We can then solve ∂R/∂b = 0 (i.e. f ′(b) = 0) for all values of θ ∈ Θ by noting that
it is a simple quadratic, hence

b̃ = −1

2

(
−2n

n+ 1

)(
n+ 2

n

)
=
n+ 2

n+ 1
(1.6)

is the value of b that minimises the risk function.
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Part b)

Now instead consider the loss function L(θ, t) = t/θ− 1− log(t/θ) and calculate its
corresponding risk:

R(θ, Tb) = E[bX(n)/θ − 1− log(bX(n)/θ)]

=
b

θ

nθ

n+ 1
− 1− log(b)︸ ︷︷ ︸
g(b)

−E[log(X(n)/θ)] . (1.7)

To optimise R we can calculate the minimum of g(b) to find

g′(b) = 0 =
n

n+ 1
− 1

b
, so b̃ =

n+ 1

n
(1.8)

is the value of b that minimises the risk R(θ, Tb).
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Q2. Bayesian approach

Let X1, . . . , Xn be a random sample from a population with pdf

f(x|θ) =

√
2θ

π
e−θx

2

1(x ≥ 0) , so f(~x|θ) =

(
2θ

π

)n/2
e−θ

∑n
i=1 x

2
i1(~x ≥ 0) (2.1)

where θ > 0 is unknown.

Part a)

Define a prior π(θ) as Gamma(a, b) with a, b > 0 being known constants, that is,

π(θ|a, b) =
1

Γ(a)ba
θa−1e−θ/b1(θ > 0) . (2.2)

Then we can first calculate the marginal distribution of ~x for f(~x, θ) = f(~x|θ)π(θ|a, b),
where we set K =

∑n
i=1 x

2
i for notational simplicity:

m(~x) =

∫
Θ

f(~x, θ)dθ

=

∫ ∞
0

(
2θ

π

)n/2
e−Kθ

1

Γ(a)ba
θa−1e−θ/bdθ

=

(
2

π

)n/2
1

Γ(a)ba

∫ ∞
0

θ(a+n/2)−1e−(K+1/b)θdθ

=

(
2

π

)n/2
1

Γ(a)ba

∫ ∞
0

(
α

K + 1/b

)(a+n/2)−1

e−α
dα

K + 1/b

=

(
2

π

)n/2
1

Γ(a)ba

(
1

K + 1/b

)a+n/2 ∫ ∞
0

α(a+n/2)−1e−αdα

=

(
2

π

)n/2
1

Γ(a)ba

(
1

K + 1/b

)a+n/2

Γ(a+ n/2) . (2.3)

Then the posterior distribution is

fθ|~x(θ|~x) =
f(~x|θ)π(θ)

m(~x)

=

((
2

π

)n/2
Γ(a+ n/2)

Γ(a)ba

(
1

K + 1/b

)a+n/2
)−1(

2

π

)n/2
1

Γ(a)ba
θ(a+n/2)−1e−(K+1/b)θ

=
(
∑n

i=1 x
2
i + 1/b)a+n/2

Γ(a+ n/2)
θ(a+n/2)−1e−(

∑n
i=1 x

2
i+1/b)θ

= π

(
θ
∣∣ a′ = a+ n/2, b′ =

1∑n
i=1 x

2
i + 1/b

)
, (2.4)

for θ > 0. Hence, since the posterior distribution is also a Gamma distribution, i.e.
fθ|~x(θ|~x) ∈ Π = {Gamma(a, b) : a, b > 0} for all π ∈ Π, for all f ∈ F (specified by
(2.2)) and for all x ∈ R, we conclude that the Gamma prior is a conjugate prior for
θ.
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Part b)

We will calculate the Bayes estimator TB such that BR(TB) = minT BR(T ) under
the loss function L(θ, t) = (t − θ)2, where BR(T ) =

∫
Θ
R(θ, T )π(θ)dθ. From the

theorem in class, this is equivalent to an estimator that minimises the posterior
expected loss Eθ|~x[L(θ, T (~x))] over all estimators, for each fixed ~x ∈ S. Then

Eθ|~x[L(θ, T (~x))] = Eθ|~x[(t− θ)2] = t2 − 2Eθ|~x[θ]t+ Eθ|~x[θ2] ,

which is minimised at t = Eθ|~x[θ] . (2.5)

We then appeal to the fact that for G ∼ π(θ|α, β) we have E[G] = αβ, so using
(2.4) we have the Bayesian estimator of θ

TB = Eθ|~x[θ] =
a+ n/2∑n
i=1 x

2
i + 1/b

. (2.6)

Part c)

Using all of the proceeding theorems, the Bayes estimator of g(θ) =
√

2/πθ1/2 under
square error loss is the posterior expected value of g(θ), hence we can calculate
(where C refers to the horrendous constants in the distribution Gamma(a′, b′) that
we substitute in afterwards),

Eθ|~x[g(θ)] =

∫ ∞
0

√
2

π
θ1/2C θa+n/2−1e−(

∑n
i=1 x

2
i+1/b)θdθ

=

√
2

π

Γ(a+ n/2 + 1/2)(
∑n

i=1 x
2
i + 1/b)−(a+n/2+1/2)

Γ(a+ n/2)(
∑n

i=1 x
2
i + 1/b)−(a+n/2)

=

√
2

π

Γ(a+ (n+ 1)/2)

Γ(a+ n/2)
√∑n

i=1 x
2
i + 1/b

. (2.7)
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Q3. Moment estimator and asymptotic

distributions

Let X1, . . . , Xn be a random sample from the following discrete distribution:

P (X1 = 1) =
2(1− θ)

2− θ
, P (X1 = 2) =

θ

2− θ
, (3.1)

where θ ∈ (0, 1) is unknown. We can first obtain a moment estimator of θ by
equating means,

m1 =
1

n

n∑
i=1

Xi = E[X1] = (1)
2(1− θ)

2− θ
+ (2)

θ

2− θ
=

2

2− θ
,

so θ̃ = 2− 2

Xn

(3.2)

is our method of moments estimator for this distribution. We can then use the delta
method to find its asymptotic distribution. The central limit theorem tells us that

√
n(Xn − µ)

d→ N(0, σ2) where µ =
2

2− θ
and σ2 =

2θ(1− θ)
(2− θ)2

. (3.3)

We can then set θ̃ = g(Xn) where

g(y) = 2− 2

y
, so g′(y) =

2

y2
. (3.4)

Then the delta method tells us

√
n
{
g(Xn)− g(µ)

} d→ N(0, σ2g′(µ)2) = N

(
0,

4σ2

µ4

)
= N

(
0,
θ(1− θ)(2− θ)2

2

)
.

(3.5)

Hence, noting the easy calculation that g(µ) = θ, we arrive at the asymptotic
distribution of θ̃,

θ̃ = g(Xn)
d→ N

(
θ,
θ(1− θ)(2− θ)2

2n

)
. (3.6)
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Q4. Test functions for Gamma

Let X1, . . . , Xn
i.i.d.∼ Gamma(r, λ) where r > 0 is known and λ > 0 is unknown. We

use the shape-scale parametrisation with pdf

f(x|r, λ) =
1

Γ(r)λr
xr−1e−x/λ1(x > 0) . (4.1)

We can easily calculate L(λ) = f(~x|λ, r) as

L(λ) =

(
1

Γ(r)λr

)n( n∏
i=1

xi

)r−1

exp

[
−1

λ

n∑
i=1

xi

]
(4.2)

Part a)

We will first find a most powerful test (MPT) of size α for testing

H0 : λ = λ0 versus H1 : λ = λ1 , (4.3)

where λ0 and λ1 are fixed real numbers satisfying 0 < λ0 < λ1. We know from
Neymann-Pearson’s lemma that for a continuous jpdf we have a MPT of the form

φ(~xn) =

{
1 if f(~x|λ1) > cf(~x|λ0)

0 if f(~x|λ1) ≤ cf(~x|λ0)
(4.4)

for some c ≥ 0 which we aim to calculate. We consider the first inequality and
calculate(

1

Γ(r)λr1

)n( n∏
i=1

xi

)r−1

exp

[
− 1

λ1

n∑
i=1

xi

]
> c

(
1

Γ(r)λr0

)n( n∏
i=1

xi

)r−1

exp

[
− 1

λ0

n∑
i=1

xi

]
,

=⇒ λ−nr1 exp

[
− 1

λ1

n∑
i=1

xi

]
> cλ−nr0 exp

[
− 1

λ0

n∑
i=1

xi

]
,

=⇒ −nr log λ1 −
1

λ1

n∑
i=1

xi > log c− nr log λ0 −
1

λ0

n∑
i=1

xi ,

=⇒
(

1

λ0

− 1

λ1

) n∑
i=1

xi > log c+ nr log
λ1

λ0

,

=⇒
n∑
i=1

xi >
λ0λ1

λ1 − λ0

(
log c+ nr log

λ1

λ0

)
= c1 .

(4.5)

In the last step we used the fact that λ0 < λ1, so we didn’t have to flip the inequality.
So our condition now becomes

Eλ0 [φ(~xn)] = Pλ0

(
n∑
i=1

Xi > c1

)
= α . (4.6)
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Then we know from elementary properties of the Gamma function that
n∑
i=1

Xi ∼ Gamma

(
n∑
i=1

ri, λ

)
= Gamma(nr, λ) , (4.7)

which then allows us to write, under H0,

2

λ0

n∑
i=1

Xi ∼ Gamma(nr, 2) ∼ χ2
2nr . (4.8)

So we can then write, where F (x; 2nr) is the CDF of χ2
2nr,

α = Pλ0

(
n∑
i=1

Xi > c1

)
= Pλ0

(
2

λ0

n∑
i=1

Xi >
2c1

λ0

)

= 1− Pλ0

(
2

λ0

n∑
i=1

Xi ≤
2c1

λ0

)

= 1− F
(

2c1

λ0

; 2nr

)
. (4.9)

Denoting χ2
2nr(k) as the kth quantile of a χ2

2nr distribution, we rearrange the above
to see

c1 =
λ0

2
χ2

2nr(1− α) . (4.10)

Therefore we can write the most powerful test for this hypothesis test as

φ(~xn) =

1 if
∑n

i=1Xi >
λ0
2
χ2

2nr(1− α)

0 if
∑n

i=1Xi ≤ λ0
2
χ2

2nr(1− α)
. (4.11)

Part b)

We now want to find a uniformly most powerful (UMP) test of size α for testing

H0 : λ ≤ λ0 versus H1 : λ > λ0 , (4.12)

where λ0 ∈ R+ is fixed. Letting (0, λ0] = Θ0 ⊂ Θ = (0,∞), we see that we can
apply the theorem from lectures. It is clear that the MPT in (4.11) is not dependent
on λ1 /∈ Θ0, so we just need to check that maxλ∈Θ0 Eλ[φ(~xn)] = α. We see that

Eλ[φ(~xn)] = Pλ

(
n∑
i=1

Xi >
λ0

2
χ2

2nr(1− α)

)

= Pλ

(
2

λ

n∑
i=1

Xi >
λ0

λ
χ2

2nr(1− α)

)

= Pλ

(
χ2

2nr >
λ0

λ
χ2

2nr(1− α)

)
(4.13)

which, viewed as a function of λ is increasing, meaning that the maximum occurs
at the boundary, λ = λ0. Hence,

max
λ∈Θ0

Eλ[φ(~xn)] = Eλ0 [φ(~xn)] = α . (4.14)

Therefore, by this theorem we have that (4.11) is a UMP test for this hypothesis.
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Part c)

We will now find a likelihood ratio test of size α for testing

H0 : λ = λ0 versus H1 : λ 6= λ0 , (4.15)

where λ0 > 0 is a fixed real number. Under H0, the MLE of λ is λ0. For the domain
Θ, we can calculate the MLE (where r is known, hence a fixed constant):

L(λ|~xn) =

(
1

Γ(r)λr

)n( n∏
i=1

xi

)r−1

e−
∑n
i=1 xi/λ1(x(1) > 0) ,

so logL = −n log Γ(r)− rn log λ+ (r − 1)

(
n∑
i=1

log xi

)
− 1

λ

n∑
i=1

xi ,

so setting
∂ logL

∂λ
= −rn

λ
+

1

λ2

n∑
i=1

xi = 0

we have λ̂ =
1

rn

n∑
i=1

xi =
1

r
Xn . (4.16)

Hence, we have our LRTS,

λ(~xn) =
L(λ0|~xn)

L(λ̂|~xn)
=

(
1

Γ(r)λr0

)n
(
∏n

i=1 xi)
r−1

e−
∑n
i=1 xi/λ01(x(1) > 0)(

1

Γ(r)λ̂r

)n
(
∏n

i=1 xi)
r−1

e−
∑n
i=1 xi/λ̂1(x(1) > 0)

=

(
λ0

λ̂

)−nr
enre

− n
λ0
Xn . (4.17)

Our likelihood ratio test is then defined as

φ(~xn) =

1 if λ(~xn) < c

0 if λ(~xn) ≥ c
, (4.18)

which satisfies Eλ0 [φ(~xn)] = Pλ0(λ(~xn) < c) = α. We first find a better condition on
our LRTS (where c1 > 0 is another constant)

λ(~xn) < c

=⇒
(
λ0

λ̂

)−nr
enre

− n
λ0
Xn < c

=⇒
(
λ0

λ̂

)−nr
e
− n
λ0
Xn < c1

=⇒
(∑n

i=1 xi
nrλ0

)nr
e
− 1
λ0

∑n
i=1 xi < c1 . (4.19)

As in part a), we can then define

Y =
2

λ0

n∑
i=1

Xi ∼ χ2
2nr (4.20)
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where our inequality (4.19) now becomes(
Y

2nr

)nr
e−Y/2 < c1

=⇒ Y nre−Y/2 < c2 , (4.21)

for some constant c2 > 0, meaning we can now define

g(y) = ynre−y/2 (4.22)

which satisfies Pλ0(g(Y ) < c2) = α.

Figure 4.1: Plot of g(y) displaying values for which inequality holds.

Using Figure 4.1 as a guide, we can translate our α condition into

Pλ0(0 < Y < y1) + Pλ0(Y > y2) = α , where g(y1) = g(y2) = c2 . (4.23)

Then since Y ∼ χ2
2nr, we can define quantiles q1, q2 > 0 where

Pλ0(0 < Y < y1) = q1 and Pλ0(Y ≤ y2) = q2 such that 1 + q1 − q2 = α . (4.24)

Hence we can now write

y1 = χ2
2nr(q1) and y2 = χ2

2nr(1− α + q1) . (4.25)

Therefore, after much effort, our acceptance and rejection regions are

Aφ(λ0) =

[
λ0

2
χ2

2nr(q1),
λ0

2
χ2

2nr(1− α + q1)

]
(4.26)

Rφ(λ0) = A(λ0)c =

(
0,
λ0

2
χ2

2nr(q1)

)
∪
(
λ0

2
χ2

2nr(1− α + q1),∞
)
, (4.27)

meaning our LRT of size α is

φ(~xn) =

1 if
∑n

i=1 Xi ∈ R(λ0)

0 if
∑n

i=1 Xi ∈ A(λ0)
. (4.28)
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Q5. Another UMP Test

Let X1, . . . , Xn be a random sample from a population with pdf

f(x|θ) =
x1/θ−1

θ
1(0 < x < 1) , (5.1)

where θ ∈ Θ = (0,∞). We want to find a UMP test for testing

H0 : λ ≤ λ0 versus H1 : λ > λ0 , (5.2)

where θ0 ∈ Θ is fixed. We start by finding a MPT for

H0 : θ = θ0 versus H1 : θ = θ1 , (5.3)

where θ1 > θ0. We note that the joint pdf of f is in an exponential family since we
can write

f(~x|θ) =

(
1

θ

)n( n∏
i=1

xi

)1/θ−1 n∏
i=1

1(0 < xi < 1)

= θ−n︸︷︷︸
c(θ)

n∏
i=1

1(0 < xi < 1)︸ ︷︷ ︸
h(~xn)

exp

(1− 1/θ)︸ ︷︷ ︸
w(θ)

(
−

n∑
i=1

log xi

)
︸ ︷︷ ︸

t(~xn)

 . (5.4)

Since w(θ) is non decreasing in θ on Θ, we see that this family of pdf’s has a
monotone likelihood ratio in t(~xn) as labelled above. By the theorem in lectures,
this tells us we have a UMP test of size α as

φ(~xn) =

1 if −
∑n

i=1 log xi > c

0 if −
∑n

i=1 log xi ≤ c
. (5.5)

We then will need to find the distribution of t(~xn), so we start by finding the
distribution of Y = − logX:

FY (y) = P (− logX ≤ y)

= P (X > e−y)

= 1−
∫ e−y

0

1

θ
t1/θ−1dt

= 1− [t1/θ]e
−y

0

= 1− e−y/θ , (5.6)

which tells us that Y ∼ Exp(1/θ), hence we have

t(~xn) = −
n∑
i=1

log xi ∼ Gamma(n, θ) , (5.7)
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where Gamma has the shape-scale distribution as in Q4, hence we can use the same
facts about chi-square in our calculations. So to determine c, we set

α = Eθ0 [φ(~xn)] = Pθ0(t(~xn) > c)

= Pθ0

(
2

θ0

t(~xn) >
2

θ 0
c

)
= Pθ0

(
χ2

2n >
2

θ0

c

)
. (5.8)

Using the exact same arguments and notation as in Q4, we arrive at our UMP test
for this hypothesis test,

φ(~xn) =

1 if
∑n

i=1Xi >
θ0
2
χ2

2n(1− α)

0 if
∑n

i=1Xi ≤ θ0
2
χ2

2n(1− α)
. (5.9)
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Q8. Confidence intervals

Part a)

To find a 1−α confidence set for λ we can invert the likelihood ratio test established
in question 3. We had an acceptance region of

Aφ(λ0) =

{
~xn :

λ0

2
χ2

2nr(q1) ≤
n∑
i=1

xi ≤
λ0

2
χ2

2nr(1− α + q1)

}

=

{
~xn :

2

χ2
2nr(1− α + q1)

n∑
i=1

xi ≤ λ0 ≤
2

χ2
2nr(q1)

n∑
i=1

xi

}
. (8.1)

Hence our 1− α confidence region for λ is

C(~xn) =

{
λ :

2

χ2
2nr(1− α + q1)

n∑
i=1

xi ≤ λ ≤ 2

χ2
2nr(q1)

n∑
i=1

xi

}
. (8.2)

Part b)

Throughout this question we have met the location-scale based statistic

Q(~xn, λ) =
2

λ0

n∑
i=1

Xi ∼ χ2
2nr , (8.3)

and so since Q does not depend on λ, we see that this is a well defined pivotal
quantity. Hence we can define c1, c2 > 0 such that

Pλ(c1 ≤ Q ≤ c2) = 1− α . (8.4)

Setting it to be an equi-tail confidence region then gives us

Pλ(Q ≤ c1) = Pλ(Q ≥ c2) = α/2 , (8.5)

hence meaning we have

c1 = χ2
2nr(α/2) and c2 = χ2

2nr(1− α/2) . (8.6)

Therefore our 1− α confidence region for λ based on the pivot Q is

C(~xn) =

{
λ :

2

χ2
2nr(α/2)

n∑
i=1

xi ≤ λ ≤ 2

χ2
2nr(1− α/2)

n∑
i=1

xi

}
. (8.7)
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Q9. More likelihood ratio tests

Let X1, . . . , Xn
i.i.d∼ N(µ, σ2), where µ ∈ R and σ2 > 0 are both unknown.

Part a)

We start by finding a likelihood ratio test of size α for testing

H0 : µ = µ0 versus H1 : µ 6= µ0

where µ0 ∈ R is fixed. Hence we define

Θ0 = {(µ, σ2) : µ = µ0, σ
2 > 0}

Θ = {(µ, σ2) : µ ∈ R, σ2 > 0} . (9.1)

We begin by calculating the MLE of θ = (µ, σ2) over the two sets to determine the
LRTS. The likelihood function for a normal distribution is

L(µ, σ2|~xn) = (2π)−
n
2 (σ2)−

n
2 exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
, (9.2)

and then we can differentiate logL to see

∂ logL

∂µ
=

1

σ2

n∑
i=1

(xi − µ) ,
∂ logL

∂σ2
= − n

2σ2
+

1

2(σ2)2

n∑
i=1

(xi − µ)2 . (9.3)

Setting both derivatives to 0 we see that the MLE for θ over Θ is, where θ̂ = (µ̂, σ̂2),

µ̂ = xn σ̂2 =
1

n

n∑
i=1

(xi − xn)2 . (9.4)

By contrast, over the set Θ0 we have θ̂0 = (µ̂0, σ̂
2
0) where

µ̂0 = µ0 σ̂2
0 =

1

n

n∑
i=1

(xi − µ0)2 . (9.5)

Therefore we calculate our likelihood ratio test statistic as

λ(~xn) =
L(θ̂0|~xn)

L(θ̂|~xn)
=

(2π)−
n
2

(
1
n

∑n
i=1(xi − µ0)2

)−n
2 exp

[
−

∑n
i=1(xi−µ0)2

2 1
n

∑n
i=1(xi−µ0)2

]
(2π)−

n
2

(
1
n

∑n
i=1(xi − xn)2

)−n
2 exp

[
−

∑n
i=1(xi−xn)2

2 1
n

∑n
i=1(xi−xn)2

]
=

(∑n
i=1(xi − µ0)2∑n
i=1(xi − xn)2

)−n
2

(9.6)

So, the LRT of size α is

φ(~xn) =

1 if λ(~xn) < c

0 if λ(~xn) ≥ c
, (9.7)
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where c satisfies Pµ0(λ(~xn) < c) = α and since σ2 is also unknown, this has to hold
for all σ2 ∈ Θ too. Noting the following identity derived in the first assignment,

n∑
i=1

(xi − µ0)2 =
n∑
i=1

(xi − xn)2 +
n∑
i=1

(xn − µ0)2 =
n∑
i=1

(xi − xn)2 + n(xn − µ0)2 ,

(9.8)

we can then calculate, for constants c1, c2 > 0

λ(~xn) =

(∑n
i=1(xi − µ0)2∑n
i=1(xi − xn)2

)−n
2

< c

=⇒
∑n

i=1(xi − µ0)2∑n
i=1(xi − xn)2

> c1

=⇒
∑n

i=1(xi − xn)2 + n(xn − µ0)2∑n
i=1(xi − xn)2

> c1

=⇒ n(xn − µ0)2∑n
i=1(xi − xn)2

> c2 . (9.9)

We then note that the denominator term looks very close to the sample variance,
hence implying that we should multiply by (n− 1) and then take the square root to
get a familiar distribution. Hence, we have for c3 > 0

=⇒
√
n|xn − µ0|√

1
n−1

∑n
i=1(xi − xn)2

> c3 . (9.10)

We can then define the new statistic under the null hypothesis, where S2
n is the

sample variance and tn−1 is the Student’s t-distribution with n−1 degrees of freedom,

T =

√
n(Xn − µ0)

Sn
∼ tn−1 , (9.11)

and we see that our condition on the LRTS becomes

Pµ0(|T | > c3) = 1− Pµ0(|T | ≤ c3) = α , (9.12)

hence indicating that we should choose c3 = tn−1(1 − α/2), the (1 − α/2)-quantile
of tn−1. Therefore, the LRT of size α for this hypothesis testing scenario is

φ(~xn) =

1 if |T | > tn−1(1− α/2)

0 if |T | ≤ tn−1(1− α/2)
. (9.13)
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Part b)

From part a), our acceptance region for this LRT is

Aφ(θ0) =

{
~xn :

∣∣∣∣√n(Xn − µ0)

Sn

∣∣∣∣ ≤ tn−1(1− α/2)

}
=

{
~xn :

∣∣Xn − µ0

∣∣ ≤ Sntn−1(1− α/2)√
n

}
=

{
~xn : −Sntn−1(1− α/2)√

n
≤ Xn − µ0 ≤

Sntn−1(1− α/2)√
n

}
=

{
~xn : Xn −

Sntn−1(1− α/2)√
n

≤ µ0 ≤ Xn +
Sntn−1(1− α/2)√

n

}
. (9.14)

Therefore, our 1− α confidence set for µ is

C(Xn) =

[
Xn −

Sntn−1(1− α/2)√
n

,Xn +
Sntn−1(1− α/2)√

n

]
. (9.15)

We note that this confidence set is indeed an interval.

Part c)

We see that along the way we have already found our pivot quantity, namely T ,
whose distribution does not depend on µ. For a 1 − α equi-tail confidence set, in
setting Pµ(c1 ≤ T ≤ c2) = 1− α we have the same calculation as in (8.4) and (8.5),
hence giving us

c1 = tn−1(α/2) and c2 = tn−1(1− α/2) . (9.16)

Therefore our 1− α confidence region for µ based on the pivot T is

C(Xn) =

[
Xn −

Sntn−1(1− α/2)√
n

,Xn −
Sntn−1(α/2)√

n

]
. (9.17)
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Q10. Pivoting on a CDF

Let X1, . . . , Xn be a random sample from a population with pdf

f(x|θ) =
3

θ3
x2

1(0 < x < θ) , (10.1)

where θ > 0 unknown. An elementary calculation shows that the cdf is

FX(x|θ) =


0 if x < 0(
x
θ

)3
if 0 ≤ x ≤ θ

1 if x > θ

. (10.2)

Part a)

We will first find a 1− α confidence interval for θ by pivoting the cdf of
X(n) = max{X1, . . . , Xn}. We first calculate the cdf of X(n):

FX(n)
(x|θ) = P (X(n) ≤ x) = P (max{X1, . . . , Xn} ≤ x)

= P (X1 ≤ y, . . . , Xn ≤ x)

=
n∏
i=1

P (Xi ≤ x) =
n∏
i=1

FXi(x|θ)

=


0 if x < 0(
x
θ

)3n
if 0 ≤ x ≤ θ

1 if x > θ

. (10.3)

Therefore, in defining the random variable FX(n)
∼ Unif(0, 1), we have a pivotal

quantity. We then note that for any fixed value of x, FX(n)
(x|θ) is a decreasing

function of θ. Hence by the theorem in class we define C(Xn) = [θL(x), θU(x)] by

FX(n)
(x|θU(x)) = α1 and FX(n)

(x|θL(x)) = 1− α2 , (10.4)

where α1, α2 < 1 satisfy α1 + α2 = α. We will then assume an equi-tail confidence
interval for simplicity, setting α1 = α2 = α/2. Then we solve (where we note
0 < α/2 < 1 when solving),(

x

θU(x)

)3n

=
α

2
, so θU(x) =

(
2

α

)1/3n

x , (10.5)

and similarly

(
x

θL(x)

)3n

=
2− α

2
, so θL(x) =

(
2

2− α

)1/3n

x . (10.6)

Therefore, our 1− α confidence interval for θ is

C(X(n)) =

{
θ :

(
2

2− α

)1/3n

X(n) ≤ θ ≤
(

2

α

)1/3n

X(n)

}
. (10.7)
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Part b)

This time we construct a confidence interval based on a pivotal quantity. We have
already seen that X(n) has a favourable distribution, so appealing to the fact that we
can create pivots from a location-scale family, we can define a new pivotal quantity
Y = X(n)/θ. We verify that it is indeed a pivot:

P (Y ≤ y) = P (X(n)/θ ≤ y) = P (X(n) ≤ θy) =


0 if x < 0(
θy
θ

)3n
if 0 ≤ θy ≤ θ

1 if θy > θ

=


0 if x < 0

y3n if 0 ≤ y ≤ 1

1 if y > 1

. (10.8)

We can hence clearly see that the distribution of Y is independent of θ, meaning it
is a well defined pivot. We then define c1, c2 > 0 such that

Pθ(c1 ≤ Y ≤ c2) = 1− α ,

and once again using an equi-tail confidence region we set

Pθ(Y ≤ c1) = Pθ(Y ≥ c2) = α/2 .

Respectively, this yields

c1 =
(α

2

)1/3n

and c2 =

(
2− α

2

)1/3n

. (10.9)

So we can now write our confidence interval as

C(Y ) =

{
θ :
(α

2

)1/3n

≤
X(n)

θ
≤
(

2− α
2

)1/3n
}

=

{
θ :

(
2

2− α

)1/3n

X(n) ≤ θ ≤
(α

2

)1/3n

X(n)

}
(10.10)

As anticipated, this is the same interval that we arrived at in part a). Hallelujah!
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Q11. Evaluation of confidence intervals

Let X1, . . . , Xn be a random sample from a population with pdf

f(x|θ) = θxθ−1
1(0 < x < 1) , (11.1)

where θ ∈ Θ = (0,∞), with cdf

F (x|θ) =


0 if x < 0

xθ if 0 ≤ y ≤ 1

1 if y > 1

. (11.2)

Part a)

We will find a 1− α confidence interval for θ based on the statistic
T (Xn) = −

∑n
i=1 logXi. By boxing smart, we notice that this is actually the same

distribution as in Q5, but with θQ11 = 1/θQ5. Hence we can use the exact same
calculation as in (5.6) and (5.7) to get

T (Xn) ∼ Gamma(n, 1/θ) . (11.3)

Hence we can scale this statistic to produce our pivot,

T ′ = 2θT (Xn) = Gamma(n, 2) ∼ χ2
2n . (11.4)

We then find c1, c2 > 0 such that Pθ(c1 ≤ 2θT (Xn) ≤ c2) = 1 − α. As in question
8b), setting an equi-tail once again, we have

c1 = χ2
2n(α/2) and c2 = χ2

2n(1− α/2) . (11.5)

Therefore, our 1− α confidence interval is

C(Xn) =

{
θ :

χ2
2n(α/2)

2(−
∑n

i=1 logXi)
≤ θ ≤ χ2

2n(1− α/2)

2(−
∑n

i=1 logXi)

}
. (11.6)

Part b)

We now want to find the shortest 1 − α interval for θ of the form [a/T, b/T ], with
T as before and a ≤ b are real numbers. We can calculate the confidence coefficient
as follows:

Pθ

(
a

T
≤ θ ≤ b

T

)
= Pθ (2a ≤ 2θT ≤ 2b)

= P (2θT ≤ 2b)− P (2θT ≤ 2a)

= FT ′(2b)− FT ′(2a) . (11.7)

Noting that we have Eθ[b/T − a/T ] = (b − a)Eθ[1/T ], this suggests we want to
minimise b− a subject to

FT ′(2b)− FT ′(2a) = 1− α , (11.8)
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hence we can rearrange to find

a =
1

2
F−1
T ′ [FT ′(2b)− (1− α)] . (11.9)

We then note for an arbitrary bijective function g(x) : R→ [0, 1], we have

dg−1(x)

dx
=

1

g′(g−1(x))
. (11.10)

We see that F−1
T ′ satisfies these requirements, hence we can set

h(b) = b− 1

2
F−1
T ′ [FT ′(2b)− (1− α)] , (11.11)

we can then calculate the derivative as follows:

dh

db
= 1− fT ′(2b)

fT ′(F
−1
T ′ [FT ′(2b)− (1− α)])

. (11.12)

Hence, the value of b that minimises h satisfies

fT ′(2b) = fT ′(F
−1
T ′ [FT ′(2b)− (1− α)]) . (11.13)

Unfortunately, fT ′(t) is not actually a bijection, meaning it is difficult to progress
further from here.

Whilst the mathematics of this calculation are quite awful to look at, there is a rela-
tively simple intuitive explanation for what we seek. We know from lectures that for
a unimodal pdf f(x), if we can find an interval [a, b] such that i)

∫ b
a
f(x)dx = 1−α,

ii) f(a) = f(b) > 0 and iii) a and b fall either side of the mode of f , then [a, b] is the
shortest interval that we seek. Clearly this theorem is telling us that the shortest
interval occurs around the region of highest ‘mass’, being the mode.

Drawing a visual picture, we can imagine a line y = k that begins tangential to
the mode on f . As we slowly reduce the value of k (move the line down), hence
yielding intercepts of f(a) = f(b) on either side of the mode, the total enclosed
integral will be some value M . Our shortest interval is then found by finding the
particular value of k such that M = 1−α. With suitable numerical calculation, this
can be easily determined using such constraints.

Part c)

Suppose θ has the prior π(θ|r, λ) as Gamma(r, λ) with the same pdf as in (2.2),
where both r and λ are known. We want to find a 1 − α Bayes highest posterior
density (HPD) credible set for θ. We have the posterior distribution as:

fθ|~xn(θ|~xn) ∝ f(~xn|θ)π(θ|r, λ)

∝ θn

(
n∏
i=1

xi

)θ−1
1

Γ(r)λr
θr−1e−θ/λ1(θ > 0)

∝ θn+r−1 exp

[
−θ

(
1

λ
−

n∑
i=1

log xi

)]
1(θ > 0) , (11.14)
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meaning we can write

fθ|~xn(θ|~xn) ∼ Gamma

n+ r,

[
1

λ
−

n∑
i=1

log xi

]−1
 . (11.15)

Then, we know from lectures that a 1−α Bayes HPD credible set for θ has the form

C(~xn) =
{
θ > 0 : fθ|~xn(θ|~xn) ≥ k

}
, (11.16)

for some k > 0 such that

P (θ ∈ C(~Xn)| ~Xn = ~xn) = 1− α . (11.17)

Since Gamma is a unimodal distribution, we know that this credible set will take
the form of an interval,

C(~Xn) =
[
θL(~Xn), θU(~Xn)

]
, (11.18)

with the additional constraint from (11.16) giving us

fθ|~xn(θL(~Xn)|~xn) = fθ|~xn(θU(~Xn)|~xn) = k

so θn+r−1
L exp

[
−θL

(
1

λ
−

n∑
i=1

log xi

)]
= θn+r−1

U exp

[
−θU

(
1

λ
−

n∑
i=1

log xi

)]
.

(11.19)

As long as all of these constraints are satisfied, we have found our HPD credible
set of level 1 − α for θ - in order to gain more specific results we would need the
assistance of numerical calculations.
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