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Q1. MGFs for
∑
χ2
pi

Let X1, . . . Xn be independent and Xi ∼ χ2
pi

for i = 1, . . . , n. Let p =
∑

i pi.
Consider the moment generating function (MGF) of Xi:

MXi(t) =

(
1

1− 2t

)pi/2
By properties of an MGF, we know that MX+Y (t) = MX(t)MY (t), hence

M∑
iXi

(t) =
n∏
i=1

MXi(t)

=
n∏
i=1

(
1

1− 2t

)pi/2
=

(
1

1− 2t

)∑
i pi/2

=

(
1

1− 2t

)p/2
By the uniqueness of an MGF, we see that M∑

iXi
(t) ∼ Mχ2

p
(t), hence we conclude

that
∑n

i=1Xi ∼ χ2
p(t) as required.
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Q2. Minimising absolute error of a random

sample

Let x1, . . . , xn be an observed sample. We wish to find the value of θ that minimises
S(θ) =

∑n
i=1 |xi − θ|. Firstly, without loss of generality, send xi 7→ x(i), its corre-

sponding order statistic. Using the fact that d
dx

(|x|) = sign(x) for x 6= 0 (more on
this assumption later), we can attempt to minimise S(θ) by finding its derivative

dS

dθ
= −

n∑
i=1

sign(x(i) − θ)

= −
n∑
i=1

(
1(x(i) ≥ θ)− 1(x(i) ≤ θ)

)
and then solving dS

dθ
= 0

=⇒ −
n∑
i=1

(
1(x(i) ≥ θ)− 1(x(i) ≤ θ)

)
= 0

=⇒
n∑
i=1

1(x(i) ≤ θ) =
n∑
i=1

1(x(i) ≥ θ) (2.1)

This suggests that θ must partition the ordered statistics (x(1), . . . , x(n)) such that
the number of observed samples is the same ”on both sides” of θ. We claim that
θ̂ = median({x(i)}ni=1) = 1

2
(x(bn+1

2
c) + x(dn+1

2
e)) is the appropriate minimser of θ. We

will denote this as θ̂ = mx.

If n is even, then
∑n

i=1 1(x(i) ≤ mx) = n
2

and
∑n

i=1 1(x(i) ≥ mx) = n
2
, hence

mx satisfies dS
dθ
|θ=mx = 0. It is worth noting, however, that in the case of n being

even, θ̂ need not be unique - indeed, any value θ ∈ (x(n/2), x(n/2+1)) would minimise
S(θ).

If n is odd, then we must include the case where 1(x(i) = mx) on both sides of our
equality in (2.1). Hence,

∑n
i=1 1(x(i) ≤ mx) = n

2
+ 1 and

∑n
i=1 1(x(i) ≥ mx) = n

2
+ 1,

hence mx satisfies dS
dθ
|θ=mx = 0 again as required.

We do notice that d2S
dθ2 = 0, so this is not an appropriate measure of whether our

claimed θ̂ is a minimum. Instead we notice that limθ→−∞ S(θ) = limθ→∞ S(θ) =∞
which tells us that, since we have found a value of θ such that dS

dθ
|θ=mx = 0, it must

be a minimum. Thus, for all cases of n, θ̂ = mx is the appropriate estimate of θ
that minimses S(θ).

[N.B. It is worth pointing out that we stated that |x| is not differentiable at x = 0,
however, since we are seeking to minimise S(θ), the contribution for x(i) = mx

to S(θ) is clearly 0 (i.e. |mx − mx| = 0). Hence we can assume without loss of
generality that it is fine (!) to define the sign(x) function as the derivative of |x|
for algebraic purposes. (We have also taken the standard definition of sign(x) here
where sign(0) = 0).]
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Q3. MME estimator for Gamma distribution

Let X1, . . . , Xn
i.i.d.∼ Gamma(λ, r), λ > 0 and r > 0. Using the definition of the

Gamma distribution as in the question, the MGF for this distribution is

MXi(t) =

(
1

1− t/λ

)r
We can easily show by induction that the nth derivative of MXi(t) is

M
(n)
Xi

(t) =

(
1

λ

)n
r . . . (r + (n− 1))

(
1

1− t/λ

)r+n
We then appeal to the fact that µn = E[Xn] = M

(n)
X (0) to derive the first and second

moments of the Gamma function.

µ1 =
r

λ
µ2 =

r(r + 1)

λ2

Let m1 = 1
n

∑
iXi and m2 = 1

n

∑
iX

2
i be the first and second sample moments

respectively. Equating µ1 = m1 and µ2 = m2 and rearranging gives us 1
λ

= m1

r
.

Substituting this into the equation for m2 gives

m2 =
(m1

r

)2

r(r + 1) λ =
r

m1

=
m2

1(r + 1)

r
=
X̄n

σ2
n

=⇒ m2r = m2
1(r + 1)

=⇒ r =
m2

1

m2 −m2
1

=
X̄2
n

σ2
n

Hence, with X̄n and σ2
n being the sample mean and sample (unbiased) variance, we

see that the MME estimates for λ and r are

λ̃ =
X̄n

σ2
n

r̃ =
X̄2
n

σ2
n
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Q4. MLE of multi-mean normal distribution

Let Xi,j for i = 1, . . . ,m and j = 1, . . . , n be independently distributed as N(µi, σ
2).

We wish to calculate the MLE of θ = (µ1, . . . , µm, σ
2)T . We can calculate the

likelihood function L(θ) as follows

L(θ) = f(x|θ)

=
m∏
i=1

n∏
j=1

f(xi,j|θ)

=
m∏
i=1

n∏
j=1

1√
2πσ2

e−
(xi,j−µi)

2

2σ2

=
m∏
i=1

(
1√

2πσ2

)n
e−

1
2σ2

∑n
j=1(xi,j−µi)2

=

(
1√

2πσ2

)n+m

e−
1

2σ2

∑m
i=1

∑n
j=1(xi,j−µi)2

=⇒ logL(θ) = −(n+m)

2
log(2π)− (n+m)

2
log(σ2)− 1

2σ2

m∑
i=1

n∑
j=1

(xi,j − µi)2

= −(n+m)

2
log(2π)− (n+m)

2
log(σ2)

− 1

2σ2

(
n∑
j=1

(x1,j − µ1)2 + · · ·+
n∑
j=1

(xm,j − µm)2

)

Setting derivatives equal to 0 for a fixed i value we get

∂ logL(θ)

∂µi
=

1

σ2

n∑
j=1

(xi,j − µi) = 0
∂ logL(θ)

∂(σ2)
= −(n+m)

2σ2
+

1

2σ4

m∑
i=1

n∑
j=1

(xi,j − µi)2 = 0

=⇒ µ̂i =
1

n

n∑
j=1

xi,j = (X̄n)i =⇒ ˆ(σ2) =
1

n+m

m∑
i=1

n∑
j=1

(xi,j − (X̄n)i)
2

To form the Hessian matrix to determine if these are indeed local maxima, where θ =
(θ1, . . . , θm, θm+1)T = (µ1, . . . , µm, σ

2)T we first calculate the necessary derivatives.

∂2 logL(θ)

∂µk∂µi
= − n

σ2
δik

∂2 logL(θ)

∂(σ2)∂µi
= − 1

σ4

n∑
j=1

(xi,j − µi)

∴
∂2 logL(θ)

∂µk∂µi

∣∣∣∣
θ=θ̂

= − n

ˆ(σ2)
δik ∴

∂2 logL(θ)

∂(σ2)∂µi

∣∣∣∣
θ=θ̂

= 0
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∂2 logL(θ)

∂(σ2)2
=

(n+m)

2σ4
− 1

σ6

m∑
i=1

n∑
j=1

(xi,j − µi)2

∴
∂2 logL(θ)

∂(σ2)2

∣∣∣∣
θ=θ̂

=
(n+m)

2 ˆ(σ2)
2 −

(n+m) ˆ(σ2)

ˆ(σ2)
3

= −(n+m)

2 ˆ(σ2)
2

Which leads us to the following Hessian matrix

H =



− n
ˆ(σ2)

0 · · · · · · 0

0 − n
ˆ(σ2)
· · · · · · ...

...
...

. . .
...

...
...

... · · · − n
ˆ(σ2)

0

0 · · · · · · 0 − (n+m)

2 ˆ(σ2)
2


A diagonal matrix is negative definite if and only if all of its entries are negative.
Clearly, since n,m > 0 and ˆ(σ2) > 0, we see that all entries of the diagonal matrix
H are indeed negative and hence H is negative definite as required. Hence the MLE
estimate of θ is

θ̂ = (µ̂1, . . . , µ̂m, σ̂2)T =

(
(X̄n)1, . . . , (X̄n)m,

1

n+m

m∑
i=1

n∑
j=1

(xi,j − (X̄n)i)
2

)
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Q5. MLE of shifted exponential distribution

Let X1, . . . , Xn be a random sample from a population with pdf

f(x|θ) =

{
e−(x−θ) x ≥ θ

0 otherwise
= e−(x−θ)

1(x ≥ θ)

We wish to maximise the likelihood function L(θ) = f(x1, . . . , xn|θ). Since the Xi’s
are independent (as they are drawn from a random sample from a population), this
is the product of their individual pdf’s. Since n is finite, we can also map each
xi 7→ x(k), its corresponding order statistic.

L(θ) =
n∏
i=1

f(xi|θ)

=
n∏
i=1

e−(xi−θ)1(xi ≥ θ)

=
n∏
k=1

e−(x(k)−θ)1(x(k) ≥ θ)

= e−
∑n
k=1(x(k)−θ)1(x(1) ≥ θ) . . .1(x(n) ≥ θ)

Since the x(i)’s are ordered, we see that 1(x(1) ≥ θ) . . .1(x(n) ≥ θ) = 1(x(1) ≥ θ).
Hence:

L(θ) = enθe−nX̄n1(x(1) ≥ θ)

Since L(θ) is positive and monotonically increasing in θ for θ ≤ x(1), we see that
L(θ) is maximised at θ = x(1) = min(X1, . . . , Xn). Hence the MLE of θ is

θ̂ = min(X1, . . . , Xn).
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Q6. Comparison of estimators for mean of

Normal

Let Xi ∼ N(µ, σ2
i ), where σ2

i are known and positive for i = 1, . . . , n and X1, . . . , Xn

are independent. Let µ̂ =
∑n
i=1(Xi/σ

2
i )∑n

i=1(1/σ2
i )

be the MLE of µ.

Part a)

Since σ2
i are known, we can treat both it and φ =

∑n
i=1(1/σ2

i ) as a fixed scalar
allowing us to move it outside of the E brackets. Hence,

E[µ̂] = E
[∑n

i=1(Xi/σ
2
i )

φ

]
E[µ̂2] = E

[(∑n
i=1(Xi/σ

2
i )

φ

)2
]

=
1

φ
E

[
n∑
i=1

(Xi/σ
2
i )

]
=

1

φ2
E

( n∑
i=1

(Xi/σ
2
i )

)2


=
1

φ

n∑
i=1

E
[
Xi

σ2
i

]
=

1

φ2
E

[
n∑
i=1

X2
i

(σ2
i )

2
+ 2

n∑
j=1

j−1∑
k=1

XjXk

σ2
jσ

2
k

]

=
1

φ

n∑
i=1

1

σ2
i

E[Xi] =
1

φ2

(
n∑
i=1

E[X2
i ]

(σ2
i )

2
+ 2

n∑
j=1

j−1∑
k=1

E[XjXk]

σ2
jσ

2
k

)

=
1

φ
φµ = µ =

1

φ2

(
n∑
i=1

σ2
i + µ2

(σ2
i )

2
+ 2

n∑
j=1

j−1∑
k=1

µ2

σ2
jσ

2
k

)

=
1

φ2

(
n∑
i=1

1

σ2
i

+ µ2

(
n∑
i=1

1

(σ2
i )

2
+ 2

n∑
j=1

j−1∑
k=1

1

σ2
jσ

2
k

))

=
1

φ2

φ+ µ2

(
n∑
i=1

1

σ2
i

)2


=
1

φ2
(φ+ µ2φ2) =

1

φ
+ µ2

∴ Var(µ̂) = E[µ̂2]− E[µ̂]2 =
1

φ
+ µ2 − µ2 =

1

φ

Where we appeal to the fact that E[XjXk] = E[Xj]E[Xk] = µ2 for j 6= k since the
Xi’s are independent. Also, we use the fact that E[X2

i ] = σ2
i + µ2. We notice that

since E[µ̂] = µ we have Biasµ(µ̂) = 0 so µ̂ is an unbiased estimator of µ.

7



Part b)

First we do some trivial calculations for X̄n = 1
n

∑n
i=1Xi. Since the Xi’s are inde-

pendent, Var(
∑
Xi) =

∑
Var(Xi).

E[X̄n] = E

[
1

n

n∑
i=1

Xi

]
Var(X̄n) = Var

(
1

n

n∑
i=1

Xi

)

=
1

n

n∑
i=1

E[Xi] =
1

n2

n∑
i=1

Var(Xi)

=
1

n
nµ = µ =

n∑
i=1

σ2
i

n2

Clearly again X̄n is an unbiased estimator of µ, meaning we can compare the relative
efficiency of our two unbiased estimators µ̂ and X̄n since MSE(µ̂) = Var(µ̂) and
MSE(X̄n) = Var(X̄n).

REµ(µ̂, X̄n) =
Var(X̄n)

Var(µ̂)
=

n∑
i=1

σ2
i

n2

n∑
j=1

1

σ2
j

=

(
n∑
i=1

σ2
i

n

)(
n∑
j=1

1

n

1

σ2
j

)

We then appeal to the Chebyshev sum inequality which states that for sequences ai
and bj such that a1 ≤ · · · ≤ an and b1 ≥ · · · ≥ bn then(

n∑
i=1

ai
n

)(
n∑
j=1

bj
n

)
≥ 1

n

n∑
i=1

aibi

Without loss of generality, rearrange the sequence of fixed σ2
i ’s (i.e. consider this ai)

so that they are ordered, hence σ2
1 ≤ · · · ≤ σ2

n. Hence the sequence bj = 1
σ2
j

satisfies

b1 ≥ · · · ≥ bn. Thus, we can conclude that

REµ(µ̂, X̄n) =

(
n∑
i=1

σ2
i

n

)(
n∑
j=1

1

n

1

σ2
j

)

≥ 1

n

n∑
i=1

σ2
i

1

σ2
i

=
1

n
n = 1

Therefore, since REµ(µ̂, X̄n) ≥ 1 (i.e. Var(X̄n) ≥ Var(µ̂)), we can conclude that µ̂
is a better estimator of µ than X̄n.
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Q7. Location-scale and Exponential Family of trans-

formed Gamma random variable

Let X be a random variable such that X ∼ Gamma(γ, α) (shape-scale parameteri-
sation) with pdf

fX(x) =
1

Γ(α)γα
xα−1e−

1
γ
x
1(x > 0)

Here we have that α is known and γ is unknown. Let Y = σ log(X). Then we can
establish the cdf of Y:

FY (y) = P (Y ≤ y) = P (σ log(X) ≤ y)

= P (log(X) ≤ y

σ
)

= P (X ≤ e
y
σ )

= FX(e
y
σ )

=

∫ e
y
σ

0

1

Γ(α)γα
xα−1e−

1
γ
xdx

Hence, we can find the pdf of Y:

fY (y) =
d

dy
FY (y) =

d

dy
FX(e

y
σ )

=
1

σ
e
y
σ fX(e

y
σ )

=
1

σΓ(α)γα
e
y
σ (e

y
σ )α−1e−

1
γ
e
y
σ
1(e

y
σ > 0)

=
1

σΓ(α)γα
e(α

σ
y− 1

γ
e
y
σ )

=
1

σΓ(α)γα
e

(
α
σ
y−e(

y−σ log γ
σ )

)

where the support set of Y is y ∈ (−∞,∞).

Part a)

Let σ > 0 be unknown. To show Y is in a location-scale family, we want to show
that for µ ∈ (−∞,∞), β > 0, we can write f(y) = 1

β
g(y−µ

β
) (i.e. g(y) = βf(βy+µ))

for a well defined pdf g(y). Let β = σ and µ = σ log γ. Then:

g(y) = βf(βy + µ) = σ
1

σΓ(α)γα
e

(
α
σ

(σy+σ log γ)−e(
σy+σ log γ−σ log γ

σ )
)

=
eα log γ

Γ(α)γα
e(αy−ey)

=
1

Γ(α)
eαye−e

y
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We can now verify that g(y) is a pdf by first noticing that g(y) ≥ 0 ∀y ∈ (−∞,∞),
and then ensuring that

∫∞
−∞ g(y)dy = 1, where we make the substitution u = ey∫ ∞
−∞

g(y)dy =

∫ ∞
−∞

1

Γ(α)
eαye−e

y

dy

=
1

Γ(α)

∫ ∞
0

uαe−uu−1du

=
1

Γ(α)

∫ ∞
0

uα−1e−udu

=
1

Γ(α)
Γ(α) = 1

Therefore, we can see that g(y) is a well defined pdf. Hence, this verifies that under
these conditions, Y is in a location-scale family.

Part b)

Let σ > 0 be known. Y is in an exponential family if we can write

f(y|θ) = c(θ)h(y) exp

{
k∑
i=1

wi(θ)ti(y)

}

where c(θ) ≥ 0, wi(θ), h(y) ≥ 0 are all real valued functions, where θ = (α, γ, σ).

Since σ is known, we can replace z = y/σ. Then:

f(z|θ) =
1

σΓ(α)γα
e(αz−

1
γ
ez)

So we can see this satisfies our requirements with:

c(θ) =
1

σΓ(α)γα

h(z) = 1

(w1(θ), w2(θ)) =

(
α,−1

γ

)
(t1(z), t2(z)) = (z, ez)

Thus under these conditions, Y is in an exponential family.
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Q8. Sufficient statistic for 1
x2

distribution

Let X1, . . . , Xn be a random sample from a population with pdf (with θ > 0)

f(x|θ) =

{
θ
x2 x ≥ θ

0 otherwise
=

θ

x2
1(x ≥ θ)

We can also calculate (for z > θ, 1 otherwise)

P (X > z) =

∫ ∞
z

θ

x2
dx

=

[
−θ
x

]∞
z

=
θ

z

Part a)

We can attempt to find the method of moments estimator for θ, however we will
soon establish that these moments do not exist. We can calculate the moments of
X quite easily for n ∈ N≥1

E[Xn] =

∫ ∞
θ

θxn−2dx

=

{
[θ log(x)]∞θ n = 1

[θ 1
n−1

xn−1]∞θ n = 2, 3, . . .

=∞ for n ∈ N≥1

Thus since the moments of X don’t exist, we cannot calculate the method of mo-
ments estimator for θ. [sad :( ]

Part b)

The likelihood function for X is

L(θ) = f(x|θ) =
n∏
i=1

θ

x2
i

1(xi ≥ θ)

= θn1(x(1) ≥ θ)
n∏
i=1

1

x2
i

Since L(θ) is positive and monotonically increasing in θ for θ ≤ x(1) (given that
θ > 0), we see that L(θ) is maximised at θ = x(1) = min(X1, . . . , Xn). Hence the

MLE of θ is θ̂ = min(X1, . . . , Xn).

We can then calculate

P (θ̂ > z) = P (min(X1, . . . , Xn) > z)

= P (X1 > z, . . . , Xn > z)

= P (X1 > z) . . . P (Xn > z)

=

(
θ

z

)n
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Thus the cdf of θ̂ is

Fθ̂(z) = 1− P (θ̂ > z) = 1−
(
θ

z

)n
and so the pdf is

fθ̂(z) =
d

dz
Fθ̂(z) =

nθn

zn+1

Part c)

We wish to find a sufficient statistic for θ. We return to the joint pdf

f(x|θ) = θn1(x(1) ≥ θ)
n∏
i=1

1

x2
i

We claim that T (X) = x(1) is a sufficient statistic for θ. This is clear to see since we
can write

f(x|θ) = θn1(x(1) ≥ θ)︸ ︷︷ ︸
g(T (x)|θ)

n∏
i=1

1

x2
i︸ ︷︷ ︸

h(x)

Thus, by the factorisation theorem, we see that T (X) = x(1) is a sufficient statistic
for θ.
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Q9. Sufficient Statistic for Multivariate Normal

Let x1, . . .xn =

(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
be a random sample from a two-dimensional

multivariate normal distribution N(µ,Σ) = N

((
µ1

µ2

)
,

(
σ11 σ12

σ12 σ22

))
where

µ1, µ2 ∈ R, σ11, σ12, σ22 ∈ R+, where all parameters are unknown and det(Σ) > 0.
To find a sufficient statistic for θ = (µ1, µ2, σ11, σ12, σ22), we first consider the joint
pdf

f(x|θ) = f(x1, . . . ,xn|θ) =
n∏
i=1

exp
[
−1

2
(xi − µ)TΣ−1(xi − µ)

]√
(2π)k det(Σ)

=

(
1

(2π)k det(Σ)

)n
2

n∏
i=1

exp

[
−1

2
(xi − µ)TΣ−1(xi − µ)

]

=

(
1

(2π)k det(Σ)

)n
2

exp

[
−1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

]
(9.1)

We then expand the the inside of the exponent as follows, where we write the statistic
T1(xi) = x̄ = 1

n

∑n
i=1 xi and we make use of the fact that (Σ−1)T = (ΣT )−1 = Σ−1,

and (ABC)T = CTBTAT

n∑
i=1

(xi − µ)TΣ−1(xi − µ) =
n∑
i=1

((xi − x̄) + (x̄− µ))TΣ−1((xi − x̄) + (x̄− µ))

=
n∑
i=1

[
(xi − x̄)TΣ−1(xi − x̄) + (x̄− µ)TΣ−1(x̄− µ)

]
+

n∑
i=1

[
(x̄− µ)TΣ−1(xi − x̄) + (xi − x̄)TΣ−1(x̄− µ)

]
=

n∑
i=1

[
(xi − x̄)TΣ−1(xi − x̄) + (x̄− µ)TΣ−1(x̄− µ)

]
+

n∑
i=1

[
2(xi − x̄)TΣ−1(x̄− µ)

]
(9.2)

However, we then notice that

n∑
i=1

(xi − x̄)TΣ−1(x̄− µ) =
n∑
i=1

(
xTi Σ−1x̄− x̄Σ−1x̄ + x̄Σ−1µ− xTi Σ−1µ

)
= nx̄Σ−1x̄− nx̄Σ−1x̄ + nx̄Σ−1µ− nx̄Σ−1µ

= 0

Hence, the last term in (9.2) vanishes.
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Thus, we can now write (9.1) as

f(x|θ) =

(
1

(2π)k det(Σ)

)n
2

exp

[
−1

2

n∑
i=1

(x̄− µ)TΣ−1(x̄− µ)

]
exp

[
−1

2

n∑
i=1

(xi − x̄)TΣ−1(xi − x̄)

]

=

(
1

(2π)k det(Σ)

)n
2

exp
[
−n

2
(x̄− µ)TΣ−1(x̄− µ)

]
exp

[
−1

2

n∑
i=1

(xi − x̄)TΣ−1(xi − x̄)

]
(9.3)

Now, to deal with the quantity in the right-hand exponential, we notice that
(xi− x̄)TΣ−1(xi− x̄) is a 1× 1 matrix, hence we can use a trick with the trace (for
which we know it obeys the cyclicity property, i.e. tr(ABC) = tr(BCA) = tr(CAB)
[and clearly tr(A+B) = tr(A) + tr(B)]) to turn this term into

n∑
i=1

(xi − x̄)TΣ−1(xi − x̄) = tr
n∑
i=1

(xi − x̄)TΣ−1(xi − x̄)

=
n∑
i=1

tr(xi − x̄)TΣ−1(xi − x̄)

=
n∑
i=1

trΣ−1(xi − x̄)(xi − x̄)T

= trΣ−1

n∑
i=1

(xi − x̄)(xi − x̄)T

We can now write down the statistic

T2(xi) = Σ̂ =
n∑
i=1

(xi − x̄)(xi − x̄)T

Then we can rewrite (9.3) as

f(x|θ) =

(
1

(2π)k det(Σ)

)n
2

exp
[
−n

2
(x̄− µ)TΣ−1(x̄− µ)

]
exp

[
−1

2
trΣ−1Σ̂

]
︸ ︷︷ ︸

g((T1(xi),T2(xi))|θ)

· 1︸︷︷︸
h(xi)

Thus, by the factorisation theorem, we have found sufficient statistics for the mul-
tivariate normal distribution, namely x̄ and Σ̂. It is worth pointing out that due to
the more sophisticated matrix calculations we have used throughout that this has
method has found sufficient statistics for a multivariate normal distribution of any
N size. It is easy and tedious to express our final function in terms of the θ provided
by the question - we shall leave this as an exercise for the reader.
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Q10. Incompleteness of bound statistics for a

uniform distribution

Let X1, . . . , Xn
i.i.d.∼ Uniform(θ, θ + 1), θ ∈ R. We wish to show that the minimal

sufficient statistic T = (X(1), X(n)) is not complete for A = {f(x|θ) : θ ∈ R}, that
is, there exists a function g such that Eθ[g(T )] = 0 6=⇒ Pθ(g(T ) = 0) = 1

We appeal to the range statistic R(T ) = X(n) − X(1). From Example 6.2.17 of
Casella and Berger, we know that R(T ) is an ancillary statistic - that is, the distri-
bution of R, which is h(r|θ) = n(n − 1)rn−2(1 − r)1(0 < r < 1), does not depend
on the parameter θ. This means that Eθ[R(T )] = k for some k ∈ R, which does not
depend on θ. Thus, we choose our g to be g(T ) = X(n) − X(1) − k. Then clearly
Eθ[g(T )] = 0. However, Pθ(g(T ) = 0) = Pθ(R(T ) = k) = 0 6= 1 since h(r|θ) is a
continuous distribution. Therefore we conclude that T is not a complete statistic
for A.
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Q11. Minimal sufficiency for a scaled-shifted

exponential

Let X1, . . . , Xn be a random sample from a population with pdf

f(x|θ) =

{
1
θ
e−

x−θ
θ x ≥ θ

0 otherwise
=

1

θ
e−

x−θ
θ 1(x ≥ θ)

where θ > 0.

Part a)

We first consider the joint pdf

f(x|θ) =
n∏
i=1

1

θ
e−

xi−θ
θ 1(xi ≥ θ)

=
1

θn
1(x(1) ≥ θ)e−

1
θ

∑n
i=1 xien

=
1

θn
1(x(1) ≥ θ)e−

nx̄
θ︸ ︷︷ ︸

g(T (x)|θ)

en︸︷︷︸
h(x)

We claim that T = (x(1), x̄) is a minimal sufficient statistic for θ. By the factorisation
theorem, it is clear that T is sufficient for θ. We want to show that the ratio
f(x|θ)/f(y|θ) is constant as a function of θ if and only if T (x) = T (y) to prove that
it is minimal sufficient. That T (x) = T (y) implies the ratio is constant is trivial to
show. Suppose that the ratio is constant, say K. Then

f(x|θ)
f(y|θ)

=
θ−n1(x(1) ≥ θ)e−

nx̄
θ en

θ−n1(y(1) ≥ θ)e−
nȳ
θ en

=
1(x(1) ≥ θ)

1(y(1) ≥ θ)
e−

n
θ

(x̄−ȳ) = K

We first observe that since K is independent of θ, this implies limx(1),y(1)→θ
1(x(1)≥θ)
1(y(1)≥θ)

must be 1. Thus, 1(x(1) ≥ θ) = 1(y(1) ≥ θ) and hence x(1) = y(1).

This then suggests that

e−
n
θ

(x̄−ȳ) = K

But since this must be true for all θ, this implies that x̄− ȳ = 0 and hence x̄ = ȳ.
Hence, we see that f(x|θ)/f(y|θ) is constant as a function of θ if and only if T (x) =
T (y) and so T is a minimal sufficient statistic for θ.

Part b)

It appears natural to believe that X ∼ f(x|θ) is in an exponential family. However,
we know from lectures that if X is a random variable from an exponential family,
then the support set of X does not depend on on the parameter θ. Clearly, the
support set of f(x|θ) depends on θ since f(x|θ) = 0 if x ≤ θ. Therefore, we
conclude that X is not in an exponential family.
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Q12. UMVUE of mean of a Normal

Let X1, . . . , Xn
i.i.d.∼ N(µ, 1), µ ∈ R.

Part a)

We want to calculate the UMVUE of µ2 and calculate its variance. We will take
it as granted that T1 = X̄n is a complete and sufficient statistic for µ. Clearly

T1
i.i.d∼ N(µ, 1/n). We can then consider

Eµ[T 2
1 ] = µ2 + 1/n

=⇒ µ2 = Eµ[T 2
1 ]− 1/n

=⇒ µ2 = Eµ[T 2
1 − 1/n]

Clearly then, if we let T2 = T 2
1 − 1/n then Bias(T2) = 0. By the Lehmann-Scheffé

Theorem, since T1 is a complete and sufficient statistic and T2 = T2(T1) is an unbi-
ased estimator of µ2, then T2 is is the UMVUE of µ2.

We can then calculate the variance, where we use standard moment of normal re-
sults.

Eµ[T 2
2 ] = Eµ[(T 2

1 − 1/n)2]

= Eµ
[
T 4

1 −
2

n
T 2

1 +
1

n2

]
= Eµ[T 4

1 ]− 2

n
Eµ[T 2

1 ] +
1

n2

= µ4 +
6

n
µ2 +

3

n2
− 2

n
(µ2 + 1/n) +

1

n2

= µ4 +
4

n
µ2 +

2

n2

∴ Var(T2) = Eµ[T 2
2 ]− Eµ[T2]2 = µ4 +

4

n
µ2 +

2

n2
− µ4 =

4µ2

n
+

2

n2

Part b)

Since X1, . . . , Xn are drawn from a normal distribution, it is clear that f(x|θ),
T2, γ(µ) = µ2 all satisfy the necessary conditions to use the Cramér-Rao Inequality
(supposing In(θ) is finite which we will show below). We then calculate the necessary
quantities

In(µ) = nI1(µ) = −nEµ
[
∂2

∂µ2
log f(X1|µ)

]
γ′(µ) = 2µ

= −nEµ[−1] = n

Which means that CRLB(T2) = (γ′(µ))2

In(µ)
= 4µ2

n
. Hence, as expected from the Cramér-

Rao Inequality, we have

Var(T2) =
4µ2

n
+

2

n2
≥ 4µ2

n
= CRLB(T2)
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Q13. UMVUE of p2 of Bernoulli

Let X1, . . . , Xn
i.i.d.∼ Bernoulli(p), p ∈ (0, 1) and require that n > 2. We wish to find

the UMVUE of γ(p) = p2.

We will take for granted that T =
∑n

i=1Xi is a complete and sufficient statistic
for p. We are interested in calculating p2 = P (X1 = 1, X2 = 1). We can then define
an unbiased estimator for γ(p) as

T0 =

{
1 if X1, X2 = 1

0 otherwise

By construction, we have E[T0] = P (X1 = 1, X2 = 1) = p2 so T0 is unbiased for
γ(p). Now we can define T1 = E[T0|T ]. Then

E[T0|T = t] = E

[
T0

∣∣∣∣∣
n∑
i=1

Xi = t

]

= P

(
X1 = 1, X2 = 1

∣∣∣∣∣
n∑
i=1

Xi = t

)

=
P (X1 = 1, X2 = 1,

∑n
i=1 Xi = t)

P (
∑n

i=1 Xi = t)

=
P (X1 = 1, X2 = 1,

∑n
i=3 Xi = t− 2)

P (
∑n

i=1Xi = t)

=
P (X1 = 1)P (X2 = 1)P (

∑n
i=3Xi = t− 2)

P (
∑n

i=1Xi = t)
1(t ≥ 2)

=
p2
(
n−2
t−2

)
pt−2(1− p)n−t(

n
t

)
pt(1− p)n−t

1(t ≥ 2)

=

(
n−2
t−2

)(
n
t

) 1(t ≥ 2)

=
(n− 2)! t!

(t− 2)! n!
1(t ≥ 2)

Thus we see that in defining

T1 = E

[
T0

∣∣∣∣∣
n∑
i=1

Xi

]
=

(n− 2)!(
∑n

i=1Xi)!

(
∑n

i=1 Xi − 2)!n!
1

(
n∑
i=1

Xi ≥ 2

)

by the Rao-Blackwell theorem we know that T1 is unbiased, and by Lehmann-Scheffé
we know that it is the UMVUE for p2.
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