Mathematical Statistics Assignment 1

Liam Carroll - 830916

Due date: 24th April 2020

Q1. MGFs for $\sum \chi^2_{p_i}$

Let X_1, \ldots, X_n be independent and $X_i \sim \chi^2_{p_i}$ for $i = 1, \ldots, n$. Let $p = \sum_i p_i$. Consider the moment generating function (MGF) of X_i :

$$M_{X_i}(t) = \left(\frac{1}{1-2t}\right)^{p_i/2}$$

By properties of an MGF, we know that $M_{X+Y}(t) = M_X(t)M_Y(t)$, hence

$$M_{\sum_{i} X_{i}}(t) = \prod_{i=1}^{n} M_{X_{i}}(t)$$
$$= \prod_{i=1}^{n} \left(\frac{1}{1-2t}\right)^{p_{i}/2}$$
$$= \left(\frac{1}{1-2t}\right)^{\sum_{i} p_{i}/2}$$
$$= \left(\frac{1}{1-2t}\right)^{p/2}$$

By the uniqueness of an MGF, we see that $M_{\sum_i X_i}(t) \sim M_{\chi_p^2}(t)$, hence we conclude that $\sum_{i=1}^n X_i \sim \chi_p^2(t)$ as required. \Box

Q2. Minimising absolute error of a random sample

Let x_1, \ldots, x_n be an observed sample. We wish to find the value of θ that minimises $S(\theta) = \sum_{i=1}^{n} |x_i - \theta|$. Firstly, without loss of generality, send $x_i \mapsto x_{(i)}$, its corresponding order statistic. Using the fact that $\frac{d}{dx}(|x|) = \operatorname{sign}(x)$ for $x \neq 0$ (more on this assumption later), we can attempt to minimise $S(\theta)$ by finding its derivative

$$\frac{dS}{d\theta} = -\sum_{i=1}^{n} \operatorname{sign}(x_{(i)} - \theta)$$
$$= -\sum_{i=1}^{n} \left(\mathbb{1}(x_{(i)} \ge \theta) - \mathbb{1}(x_{(i)} \le \theta) \right)$$

and then solving $\frac{dS}{d\theta}=0$

$$\implies -\sum_{i=1}^{n} \left(\mathbb{1}(x_{(i)} \ge \theta) - \mathbb{1}(x_{(i)} \le \theta) \right) = 0$$
$$\implies \sum_{i=1}^{n} \mathbb{1}(x_{(i)} \le \theta) = \sum_{i=1}^{n} \mathbb{1}(x_{(i)} \ge \theta)$$
(2.1)

This suggests that θ must partition the ordered statistics $(x_{(1)}, \ldots, x_{(n)})$ such that the number of observed samples is the same "on both sides" of θ . We claim that $\hat{\theta} = \text{median}(\{x_{(i)}\}_{i=1}^{n}) = \frac{1}{2}(x_{(\lfloor \frac{n+1}{2} \rfloor)} + x_{(\lceil \frac{n+1}{2} \rceil)})$ is the appropriate minimiser of θ . We will denote this as $\hat{\theta} = m_x$.

If *n* is even, then $\sum_{i=1}^{n} \mathbb{1}(x_{(i)} \leq m_x) = \frac{n}{2}$ and $\sum_{i=1}^{n} \mathbb{1}(x_{(i)} \geq m_x) = \frac{n}{2}$, hence m_x satisfies $\frac{dS}{d\theta}|_{\theta=m_x} = 0$. It is worth noting, however, that in the case of *n* being even, $\hat{\theta}$ need not be unique - indeed, any value $\theta \in (x_{(n/2)}, x_{(n/2+1)})$ would minimise $S(\theta)$.

If n is odd, then we must include the case where $\mathbb{1}(x_{(i)} = m_x)$ on both sides of our equality in (2.1). Hence, $\sum_{i=1}^n \mathbb{1}(x_{(i)} \le m_x) = \frac{n}{2} + 1$ and $\sum_{i=1}^n \mathbb{1}(x_{(i)} \ge m_x) = \frac{n}{2} + 1$, hence m_x satisfies $\frac{dS}{d\theta}|_{\theta=m_x} = 0$ again as required.

We do notice that $\frac{d^2S}{d\theta^2} = 0$, so this is not an appropriate measure of whether our claimed $\hat{\theta}$ is a minimum. Instead we notice that $\lim_{\theta \to -\infty} S(\theta) = \lim_{\theta \to \infty} S(\theta) = \infty$ which tells us that, since we have found a value of θ such that $\frac{dS}{d\theta}|_{\theta=m_x} = 0$, it must be a minimum. Thus, for all cases of n, $\hat{\theta} = m_x$ is the appropriate estimate of θ that minimizes $S(\theta)$. \Box

[N.B. It is worth pointing out that we stated that |x| is not differentiable at x = 0, however, since we are seeking to minimise $S(\theta)$, the contribution for $x_{(i)} = m_x$ to $S(\theta)$ is clearly 0 (i.e. $|m_x - m_x| = 0$). Hence we can assume without loss of generality that it is fine (!) to define the sign(x) function as the derivative of |x|for algebraic purposes. (We have also taken the standard definition of sign(x) here where sign(0) = 0).]

Q3. MME estimator for Gamma distribution

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \text{Gamma}(\lambda, r), \ \lambda > 0 \text{ and } r > 0$. Using the definition of the Gamma distribution as in the question, the MGF for this distribution is

$$M_{X_i}(t) = \left(\frac{1}{1 - t/\lambda}\right)^2$$

We can easily show by induction that the n^{th} derivative of $M_{X_i}(t)$ is

$$M_{X_i}^{(n)}(t) = \left(\frac{1}{\lambda}\right)^n r \dots \left(r + (n-1)\right) \left(\frac{1}{1 - t/\lambda}\right)^{r+n}$$

We then appeal to the fact that $\mu_n = \mathbb{E}[X^n] = M_X^{(n)}(0)$ to derive the first and second moments of the Gamma function.

$$\mu_1 = \frac{r}{\lambda} \qquad \qquad \mu_2 = \frac{r(r+1)}{\lambda^2}$$

Let $m_1 = \frac{1}{n} \sum_i X_i$ and $m_2 = \frac{1}{n} \sum_i X_i^2$ be the first and second sample moments respectively. Equating $\mu_1 = m_1$ and $\mu_2 = m_2$ and rearranging gives us $\frac{1}{\lambda} = \frac{m_1}{r}$. Substituting this into the equation for m_2 gives

$$m_{2} = \left(\frac{m_{1}}{r}\right)^{2} r(r+1) \qquad \lambda = \frac{r}{m_{1}}$$
$$= \frac{m_{1}^{2}(r+1)}{r} \qquad = \frac{\bar{X}_{n}}{\sigma_{n}^{2}}$$
$$\implies m_{2}r = m_{1}^{2}(r+1)$$
$$\implies r = \frac{m_{1}^{2}}{m_{2} - m_{1}^{2}}$$
$$= \frac{\bar{X}_{n}^{2}}{\sigma_{n}^{2}}$$

Hence, with \bar{X}_n and σ_n^2 being the sample mean and sample (unbiased) variance, we see that the MME estimates for λ and r are

$$\tilde{\lambda} = \frac{\bar{X}_n}{\sigma_n^2}$$
 $\tilde{r} = \frac{\bar{X}_n^2}{\sigma_n^2}$

Q4. MLE of multi-mean normal distribution

Let $X_{i,j}$ for i = 1, ..., m and j = 1, ..., n be independently distributed as $N(\mu_i, \sigma^2)$. We wish to calculate the MLE of $\boldsymbol{\theta} = (\mu_1, ..., \mu_m, \sigma^2)^T$. We can calculate the likelihood function $L(\boldsymbol{\theta})$ as follows

$$\begin{split} L(\boldsymbol{\theta}) &= f(\mathbf{x}|\boldsymbol{\theta}) \\ &= \prod_{i=1}^{m} \prod_{j=1}^{n} f(x_{i,j}|\boldsymbol{\theta}) \\ &= \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i,j}-\mu_{i})^{2}}{2\sigma^{2}}} \\ &= \prod_{i=1}^{m} \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right)^{n} e^{-\frac{1}{2\sigma^{2}} \sum_{j=1}^{n} (x_{i,j}-\mu_{i})^{2}} \\ &= \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right)^{n+m} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{i,j}-\mu_{i})^{2}} \\ \implies \log L(\boldsymbol{\theta}) &= -\frac{(n+m)}{2} \log(2\pi) - \frac{(n+m)}{2} \log(\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{i,j}-\mu_{i})^{2} \\ &= -\frac{(n+m)}{2} \log(2\pi) - \frac{(n+m)}{2} \log(\sigma^{2}) \\ &- \frac{1}{2\sigma^{2}} \left(\sum_{j=1}^{n} (x_{1,j}-\mu_{1})^{2} + \dots + \sum_{j=1}^{n} (x_{m,j}-\mu_{m})^{2}\right) \end{split}$$

Setting derivatives equal to 0 for a fixed i value we get

$$\frac{\partial \log L(\boldsymbol{\theta})}{\partial \mu_i} = \frac{1}{\sigma^2} \sum_{j=1}^n (x_{i,j} - \mu_i) = 0 \quad \frac{\partial \log L(\boldsymbol{\theta})}{\partial (\sigma^2)} = -\frac{(n+m)}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^m \sum_{j=1}^n (x_{i,j} - \mu_i)^2 = 0$$
$$\implies \hat{\mu}_i = \frac{1}{n} \sum_{j=1}^n x_{i,j} = (\bar{X}_n)_i \qquad \Longrightarrow \quad (\hat{\sigma^2}) = \frac{1}{n+m} \sum_{i=1}^m \sum_{j=1}^n (x_{i,j} - (\bar{X}_n)_i)^2$$

To form the Hessian matrix to determine if these are indeed local maxima, where $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_m, \theta_{m+1})^T = (\mu_1, \ldots, \mu_m, \sigma^2)^T$ we first calculate the necessary derivatives.

$$\frac{\partial^2 \log L(\boldsymbol{\theta})}{\partial \mu_k \partial \mu_i} = -\frac{n}{\sigma^2} \delta_{ik} \qquad \qquad \frac{\partial^2 \log L(\boldsymbol{\theta})}{\partial (\sigma^2) \partial \mu_i} = -\frac{1}{\sigma^4} \sum_{j=1}^n (x_{i,j} - \mu_i)$$
$$\therefore \left. \frac{\partial^2 \log L(\boldsymbol{\theta})}{\partial \mu_k \partial \mu_i} \right|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} = -\frac{n}{(\hat{\sigma^2})} \delta_{ik} \qquad \therefore \left. \frac{\partial^2 \log L(\boldsymbol{\theta})}{\partial (\sigma^2) \partial \mu_i} \right|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} = 0$$

$$\frac{\partial^2 \log L(\boldsymbol{\theta})}{\partial (\sigma^2)^2} = \frac{(n+m)}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^m \sum_{j=1}^n (x_{i,j} - \mu_i)^2$$
$$\therefore \left. \frac{\partial^2 \log L(\boldsymbol{\theta})}{\partial (\sigma^2)^2} \right|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} = \frac{(n+m)}{2(\hat{\sigma^2})^2} - \frac{(n+m)(\hat{\sigma^2})}{(\hat{\sigma^2})^3}$$
$$= -\frac{(n+m)}{2(\hat{\sigma^2})^2}$$

Which leads us to the following Hessian matrix

$$H = \begin{pmatrix} -\frac{n}{(\hat{\sigma}^2)} & 0 & \cdots & \cdots & 0\\ 0 & -\frac{n}{(\hat{\sigma}^2)} & \cdots & \cdots & \vdots\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ \vdots & \vdots & \cdots & -\frac{n}{(\hat{\sigma}^2)} & 0\\ 0 & \cdots & \cdots & 0 & -\frac{(n+m)}{2(\hat{\sigma}^2)^2} \end{pmatrix}$$

A diagonal matrix is negative definite if and only if all of its entries are negative. Clearly, since n, m > 0 and $(\hat{\sigma}^2) > 0$, we see that all entries of the diagonal matrix H are indeed negative and hence H is negative definite as required. Hence the MLE estimate of $\boldsymbol{\theta}$ is

$$\hat{\boldsymbol{\theta}} = (\hat{\mu_1}, \dots, \hat{\mu_m}, \hat{\sigma^2})^T = \left((\bar{X}_n)_1, \dots, (\bar{X}_n)_m, \frac{1}{n+m} \sum_{i=1}^m \sum_{j=1}^n (x_{i,j} - (\bar{X}_n)_i)^2 \right)$$

Q5. MLE of shifted exponential distribution

Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \begin{cases} e^{-(x-\theta)} & x \ge \theta\\ 0 & \text{otherwise} \end{cases} = e^{-(x-\theta)} \mathbb{1}(x \ge \theta)$$

We wish to maximise the likelihood function $L(\theta) = f(x_1, \ldots, x_n | \theta)$. Since the X_i 's are independent (as they are drawn from a random sample from a population), this is the product of their individual pdf's. Since n is finite, we can also map each $x_i \mapsto x_{(k)}$, its corresponding order statistic.

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta)$$

=
$$\prod_{i=1}^{n} e^{-(x_i-\theta)} \mathbb{1}(x_i \ge \theta)$$

=
$$\prod_{k=1}^{n} e^{-(x_{(k)}-\theta)} \mathbb{1}(x_{(k)} \ge \theta)$$

=
$$e^{-\sum_{k=1}^{n} (x_{(k)}-\theta)} \mathbb{1}(x_{(1)} \ge \theta) \dots \mathbb{1}(x_{(n)} \ge \theta)$$

Since the $x_{(i)}$'s are ordered, we see that $\mathbb{1}(x_{(1)} \ge \theta) \dots \mathbb{1}(x_{(n)} \ge \theta) = \mathbb{1}(x_{(1)} \ge \theta)$. Hence:

$$L(\theta) = e^{n\theta} e^{-n\bar{X}_n} \mathbb{1}(x_{(1)} \ge \theta)$$

Since $L(\theta)$ is positive and monotonically increasing in θ for $\theta \leq x_{(1)}$, we see that $L(\theta)$ is maximised at $\theta = x_{(1)} = \min(X_1, \ldots, X_n)$. Hence the MLE of θ is $\hat{\theta} = \min(X_1, \ldots, X_n)$. \Box

Q6. Comparison of estimators for mean of Normal

Let $X_i \sim N(\mu, \sigma_i^2)$, where σ_i^2 are known and positive for $i = 1, \ldots, n$ and X_1, \ldots, X_n are independent. Let $\hat{\mu} = \frac{\sum_{i=1}^n (X_i/\sigma_i^2)}{\sum_{i=1}^n (1/\sigma_i^2)}$ be the MLE of μ .

Part a)

Since σ_i^2 are known, we can treat both it and $\phi = \sum_{i=1}^n (1/\sigma_i^2)$ as a fixed scalar allowing us to move it outside of the \mathbb{E} brackets. Hence,

$$\begin{split} \mathbb{E}[\hat{\mu}] &= \mathbb{E}\left[\frac{\sum_{i=1}^{n}(X_{i}/\sigma_{i}^{2})}{\phi}\right] \quad \mathbb{E}[\hat{\mu}^{2}] = \mathbb{E}\left[\left(\frac{\sum_{i=1}^{n}(X_{i}/\sigma_{i}^{2})}{\phi}\right)^{2}\right] \\ &= \frac{1}{\phi}\mathbb{E}\left[\sum_{i=1}^{n}(X_{i}/\sigma_{i}^{2})\right] \quad = \frac{1}{\phi^{2}}\mathbb{E}\left[\left(\sum_{i=1}^{n}(X_{i}/\sigma_{i}^{2})\right)^{2}\right] \\ &= \frac{1}{\phi}\sum_{i=1}^{n}\mathbb{E}\left[\frac{X_{i}}{\sigma_{i}^{2}}\right] \quad = \frac{1}{\phi^{2}}\mathbb{E}\left[\sum_{i=1}^{n}\frac{X_{i}^{2}}{(\sigma_{i}^{2})^{2}} + 2\sum_{j=1}^{n}\sum_{k=1}^{j-1}\frac{X_{j}X_{k}}{\sigma_{j}^{2}\sigma_{k}^{2}}\right] \\ &= \frac{1}{\phi}\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}\mathbb{E}[X_{i}] \quad = \frac{1}{\phi^{2}}\left(\sum_{i=1}^{n}\frac{E[X_{i}^{2}]}{(\sigma_{i}^{2})^{2}} + 2\sum_{j=1}^{n}\sum_{k=1}^{j-1}\frac{E[X_{j}X_{k}]}{\sigma_{j}^{2}\sigma_{k}^{2}}\right) \\ &= \frac{1}{\phi}\phi\mu = \mu \quad = \frac{1}{\phi^{2}}\left(\sum_{i=1}^{n}\frac{\sigma_{i}^{2} + \mu^{2}}{(\sigma_{i}^{2})^{2}} + 2\sum_{j=1}^{n}\sum_{k=1}^{j-1}\frac{\mu^{2}}{\sigma_{j}^{2}\sigma_{k}^{2}}\right) \\ &= \frac{1}{\phi^{2}}\left(\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}} + \mu^{2}\left(\sum_{i=1}^{n}\frac{1}{(\sigma_{i}^{2})^{2}} + 2\sum_{j=1}^{n}\sum_{k=1}^{n}\frac{1}{\sigma_{j}^{2}\sigma_{k}^{2}}\right)\right) \\ &= \frac{1}{\phi^{2}}\left(\phi + \mu^{2}\left(\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}\right)^{2}\right) \\ &= \frac{1}{\phi^{2}}(\phi + \mu^{2}\phi^{2}) = \frac{1}{\phi} + \mu^{2} \end{split}$$

$$\therefore \operatorname{Var}(\hat{\mu}) = \mathbb{E}[\hat{\mu}^2] - \mathbb{E}[\hat{\mu}]^2 = \frac{1}{\phi} + \mu^2 - \mu^2 = \frac{1}{\phi}$$

Where we appeal to the fact that $\mathbb{E}[X_j X_k] = \mathbb{E}[X_j]\mathbb{E}[X_k] = \mu^2$ for $j \neq k$ since the X_i 's are independent. Also, we use the fact that $\mathbb{E}[X_i^2] = \sigma_i^2 + \mu^2$. We notice that since $\mathbb{E}[\hat{\mu}] = \mu$ we have $\text{Bias}_{\mu}(\hat{\mu}) = 0$ so $\hat{\mu}$ is an unbiased estimator of μ .

Part b)

First we do some trivial calculations for $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Since the X_i 's are independent, $\operatorname{Var}(\sum X_i) = \sum \operatorname{Var}(X_i)$.

$$\mathbb{E}[\bar{X}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] \qquad \operatorname{Var}(\bar{X}_n) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^n X_i\right)$$
$$= \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] \qquad \qquad = \frac{1}{n^2}\sum_{i=1}^n \operatorname{Var}(X_i)$$
$$= \frac{1}{n}n\mu = \mu \qquad \qquad = \sum_{i=1}^n \frac{\sigma_i^2}{n^2}$$

Clearly again \bar{X}_n is an unbiased estimator of μ , meaning we can compare the relative efficiency of our two unbiased estimators $\hat{\mu}$ and \bar{X}_n since $MSE(\hat{\mu}) = Var(\hat{\mu})$ and $MSE(\bar{X}_n) = Var(\bar{X}_n)$.

$$RE_{\mu}(\hat{\mu}, \bar{X}_n) = \frac{\operatorname{Var}(\bar{X}_n)}{\operatorname{Var}(\hat{\mu})} = \sum_{i=1}^n \frac{\sigma_i^2}{n^2} \sum_{j=1}^n \frac{1}{\sigma_j^2} = \left(\sum_{i=1}^n \frac{\sigma_i^2}{n}\right) \left(\sum_{j=1}^n \frac{1}{n} \frac{1}{\sigma_j^2}\right)$$

We then appeal to the Chebyshev sum inequality which states that for sequences a_i and b_j such that $a_1 \leq \cdots \leq a_n$ and $b_1 \geq \cdots \geq b_n$ then

$$\left(\sum_{i=1}^{n} \frac{a_i}{n}\right) \left(\sum_{j=1}^{n} \frac{b_j}{n}\right) \ge \frac{1}{n} \sum_{i=1}^{n} a_i b_i$$

Without loss of generality, rearrange the sequence of fixed $\sigma_i^{2,s}$ (i.e. consider this a_i) so that they are ordered, hence $\sigma_1^2 \leq \cdots \leq \sigma_n^2$. Hence the sequence $b_j = \frac{1}{\sigma_j^2}$ satisfies $b_1 \geq \cdots \geq b_n$. Thus, we can conclude that

$$RE_{\mu}(\hat{\mu}, \bar{X}_n) = \left(\sum_{i=1}^n \frac{\sigma_i^2}{n}\right) \left(\sum_{j=1}^n \frac{1}{n} \frac{1}{\sigma_j^2}\right)$$
$$\geq \frac{1}{n} \sum_{i=1}^n \sigma_i^2 \frac{1}{\sigma_i^2} = \frac{1}{n}n = 1$$

Therefore, since $RE_{\mu}(\hat{\mu}, \bar{X}_n) \geq 1$ (i.e. $Var(\bar{X}_n) \geq Var(\hat{\mu})$), we can conclude that $\hat{\mu}$ is a better estimator of μ than \bar{X}_n . \Box

Q7. Location-scale and Exponential Family of transformed Gamma random variable

Let X be a random variable such that $X \sim \text{Gamma}(\gamma, \alpha)$ (shape-scale parameterisation) with pdf

$$f_X(x) = \frac{1}{\Gamma(\alpha)\gamma^{\alpha}} x^{\alpha-1} e^{-\frac{1}{\gamma}x} \mathbb{1}(x>0)$$

Here we have that α is known and γ is unknown. Let $Y = \sigma \log(X)$. Then we can establish the cdf of Y:

$$F_Y(y) = P(Y \le y) = P(\sigma \log(X) \le y)$$

= $P(\log(X) \le \frac{y}{\sigma})$
= $P(X \le e^{\frac{y}{\sigma}})$
= $F_X(e^{\frac{y}{\sigma}})$
= $\int_0^{e^{\frac{y}{\sigma}}} \frac{1}{\Gamma(\alpha)\gamma^{\alpha}} x^{\alpha-1} e^{-\frac{1}{\gamma}x} dx$

Hence, we can find the pdf of Y:

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(e^{\frac{y}{\sigma}})$$

$$= \frac{1}{\sigma} e^{\frac{y}{\sigma}} f_X(e^{\frac{y}{\sigma}})$$

$$= \frac{1}{\sigma \Gamma(\alpha) \gamma^{\alpha}} e^{\frac{y}{\sigma}} (e^{\frac{y}{\sigma}})^{\alpha - 1} e^{-\frac{1}{\gamma} e^{\frac{y}{\sigma}}} \mathbb{1}(e^{\frac{y}{\sigma}} > 0)$$

$$= \frac{1}{\sigma \Gamma(\alpha) \gamma^{\alpha}} e^{(\frac{\alpha}{\sigma} y - \frac{1}{\gamma} e^{\frac{y}{\sigma}})}$$

$$= \frac{1}{\sigma \Gamma(\alpha) \gamma^{\alpha}} e^{\left(\frac{\alpha}{\sigma} y - e^{(\frac{y - \sigma \log \gamma}{\sigma})}\right)}$$

where the support set of Y is $y \in (-\infty, \infty)$.

Part a)

Let $\sigma > 0$ be unknown. To show Y is in a location-scale family, we want to show that for $\mu \in (-\infty, \infty)$, $\beta > 0$, we can write $f(y) = \frac{1}{\beta}g(\frac{y-\mu}{\beta})$ (i.e. $g(y) = \beta f(\beta y + \mu)$) for a well defined pdf g(y). Let $\beta = \sigma$ and $\mu = \sigma \log \gamma$. Then:

$$g(y) = \beta f(\beta y + \mu) = \sigma \frac{1}{\sigma \Gamma(\alpha) \gamma^{\alpha}} e^{\left(\frac{\alpha}{\sigma}(\sigma y + \sigma \log \gamma) - e^{\left(\frac{\sigma y + \sigma \log \gamma - \sigma \log \gamma}{\sigma}\right)}\right)}$$
$$= \frac{e^{\alpha \log \gamma}}{\Gamma(\alpha) \gamma^{\alpha}} e^{(\alpha y - e^y)}$$
$$= \frac{1}{\Gamma(\alpha)} e^{\alpha y} e^{-e^y}$$

We can now verify that g(y) is a pdf by first noticing that $g(y) \ge 0 \quad \forall y \in (-\infty, \infty)$, and then ensuring that $\int_{-\infty}^{\infty} g(y) dy = 1$, where we make the substitution $u = e^y$

$$\begin{split} \int_{-\infty}^{\infty} g(y) dy &= \int_{-\infty}^{\infty} \frac{1}{\Gamma(\alpha)} e^{\alpha y} e^{-e^{y}} dy \\ &= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} u^{\alpha} e^{-u} u^{-1} du \\ &= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} u^{\alpha-1} e^{-u} du \\ &= \frac{1}{\Gamma(\alpha)} \Gamma(\alpha) = 1 \end{split}$$

Therefore, we can see that g(y) is a well defined pdf. Hence, this verifies that under these conditions, Y is in a location-scale family. \Box

Part b)

Let $\sigma > 0$ be known. Y is in an exponential family if we can write

$$f(y|\boldsymbol{\theta}) = c(\boldsymbol{\theta})h(y) \exp\left\{\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(y)\right\}$$

where $c(\boldsymbol{\theta}) \geq 0$, $w_i(\boldsymbol{\theta})$, $h(y) \geq 0$ are all real valued functions, where $\boldsymbol{\theta} = (\alpha, \gamma, \sigma)$.

Since σ is known, we can replace $z = y/\sigma$. Then:

$$f(z|\boldsymbol{\theta}) = \frac{1}{\sigma \Gamma(\alpha) \gamma^{\alpha}} e^{\left(\alpha z - \frac{1}{\gamma} e^{z}\right)}$$

So we can see this satisfies our requirements with:

$$c(\boldsymbol{\theta}) = \frac{1}{\sigma \Gamma(\alpha) \gamma^{\alpha}}$$
$$h(z) = 1$$
$$(w_1(\boldsymbol{\theta}), w_2(\boldsymbol{\theta})) = \left(\alpha, -\frac{1}{\gamma}\right)$$
$$(t_1(z), t_2(z)) = (z, e^z)$$

Thus under these conditions, Y is in an exponential family. \Box

Q8. Sufficient statistic for $\frac{1}{x^2}$ distribution

Let X_1, \ldots, X_n be a random sample from a population with pdf (with $\theta > 0$)

$$f(x|\theta) = \begin{cases} \frac{\theta}{x^2} & x \ge \theta\\ 0 & \text{otherwise} \end{cases} = \frac{\theta}{x^2} \mathbb{1}(x \ge \theta)$$

We can also calculate (for $z > \theta$, 1 otherwise)

$$P(X > z) = \int_{z}^{\infty} \frac{\theta}{x^{2}} dx$$
$$= \left[-\frac{\theta}{x}\right]_{z}^{\infty} = \frac{\theta}{z}$$

Part a)

We can attempt to find the method of moments estimator for θ , however we will soon establish that these moments do not exist. We can calculate the moments of X quite easily for $n \in \mathbb{N}_{>1}$

$$\mathbb{E}[X^n] = \int_{\theta}^{\infty} \theta x^{n-2} dx$$
$$= \begin{cases} [\theta \log(x)]_{\theta}^{\infty} & n = 1\\ [\theta \frac{1}{n-1} x^{n-1}]_{\theta}^{\infty} & n = 2, 3, \dots \end{cases}$$
$$= \infty \text{ for } n \in \mathbb{N}_{\geq 1}$$

Thus since the moments of X don't exist, we cannot calculate the method of moments estimator for θ . [sad :(]

Part b)

The likelihood function for X is

$$L(\theta) = f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{\theta}{x_i^2} \mathbb{1}(x_i \ge \theta)$$
$$= \theta^n \mathbb{1}(x_{(1)} \ge \theta) \prod_{i=1}^{n} \frac{1}{x_i^2}$$

Since $L(\theta)$ is positive and monotonically increasing in θ for $\theta \leq x_{(1)}$ (given that $\theta > 0$), we see that $L(\theta)$ is maximised at $\theta = x_{(1)} = \min(X_1, \ldots, X_n)$. Hence the MLE of θ is $\hat{\theta} = \min(X_1, \ldots, X_n)$.

We can then calculate

$$P(\theta > z) = P(\min(X_1, \dots, X_n) > z)$$

= $P(X_1 > z, \dots, X_n > z)$
= $P(X_1 > z) \dots P(X_n > z)$
= $\left(\frac{\theta}{z}\right)^n$

Thus the cdf of $\hat{\theta}$ is

$$F_{\hat{\theta}}(z) = 1 - P(\hat{\theta} > z) = 1 - \left(\frac{\theta}{z}\right)^n$$

and so the pdf is

$$f_{\hat{\theta}}(z) = \frac{d}{dz} F_{\hat{\theta}}(z) = \frac{n\theta^n}{z^{n+1}}$$

Part c)

We wish to find a sufficient statistic for θ . We return to the joint pdf

$$f(\mathbf{x}|\theta) = \theta^n \mathbb{1}(x_{(1)} \ge \theta) \prod_{i=1}^n \frac{1}{x_i^2}$$

We claim that $T(\mathbf{X}) = x_{(1)}$ is a sufficient statistic for θ . This is clear to see since we can write

$$f(\mathbf{x}|\theta) = \underbrace{\theta^n \mathbb{1}(x_{(1)} \ge \theta)}_{g(T(\mathbf{x})|\theta)} \underbrace{\prod_{i=1}^n \frac{1}{x_i^2}}_{h(\mathbf{x})}$$

Thus, by the factorisation theorem, we see that $T(\mathbf{X}) = x_{(1)}$ is a sufficient statistic for θ . \Box

Q9. Sufficient Statistic for Multivariate Normal

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n = \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix}, \ldots, \begin{pmatrix} X_n \\ Y_n \end{pmatrix}$ be a random sample from a two-dimensional multivariate normal distribution $N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}\right)$ where $\mu_1, \mu_2 \in \mathbb{R}, \sigma_{11}, \sigma_{12}, \sigma_{22} \in \mathbb{R}^+$, where all parameters are unknown and det $(\boldsymbol{\Sigma}) > 0$. To find a sufficient statistic for $\boldsymbol{\theta} = (\mu_1, \mu_2, \sigma_{11}, \sigma_{12}, \sigma_{22})$, we first consider the joint pdf

$$f(\mathbf{x}|\boldsymbol{\theta}) = f(\mathbf{x}_1, \dots, \mathbf{x}_n | \boldsymbol{\theta}) = \prod_{i=1}^n \frac{\exp\left[-\frac{1}{2}(\mathbf{x}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}_i - \boldsymbol{\mu})\right]}{\sqrt{(2\pi)^k \det(\boldsymbol{\Sigma})}}$$
$$= \left(\frac{1}{(2\pi)^k \det(\boldsymbol{\Sigma})}\right)^{\frac{n}{2}} \prod_{i=1}^n \exp\left[-\frac{1}{2}(\mathbf{x}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}_i - \boldsymbol{\mu})\right]$$
$$= \left(\frac{1}{(2\pi)^k \det(\boldsymbol{\Sigma})}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2} \sum_{i=1}^n (\mathbf{x}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}_i - \boldsymbol{\mu})\right]$$
(9.1)

We then expand the the inside of the exponent as follows, where we write the statistic $\mathbf{T}_1(\mathbf{x}_i) = \bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$ and we make use of the fact that $(\mathbf{\Sigma}^{-1})^T = (\mathbf{\Sigma}^T)^{-1} = \mathbf{\Sigma}^{-1}$, and $(ABC)^T = C^T B^T A^T$

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}) = \sum_{i=1}^{n} ((\mathbf{x}_{i} - \bar{\mathbf{x}}) + (\bar{\mathbf{x}} - \boldsymbol{\mu}))^{T} \boldsymbol{\Sigma}^{-1} ((\mathbf{x}_{i} - \bar{\mathbf{x}}) + (\bar{\mathbf{x}} - \boldsymbol{\mu}))$$

$$= \sum_{i=1}^{n} \left[(\mathbf{x}_{i} - \bar{\mathbf{x}})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}}) + (\bar{\mathbf{x}} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \right]$$

$$+ \sum_{i=1}^{n} \left[(\bar{\mathbf{x}} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}}) + (\mathbf{x}_{i} - \bar{\mathbf{x}})^{T} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \right]$$

$$= \sum_{i=1}^{n} \left[(\mathbf{x}_{i} - \bar{\mathbf{x}})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}}) + (\bar{\mathbf{x}} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \right]$$

$$+ \sum_{i=1}^{n} \left[2(\mathbf{x}_{i} - \bar{\mathbf{x}})^{T} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \right]$$
(9.2)

However, we then notice that

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{T} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) = \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \boldsymbol{\Sigma}^{-1} \bar{\mathbf{x}} - \bar{\mathbf{x}} \boldsymbol{\Sigma}^{-1} \bar{\mathbf{x}} + \bar{\mathbf{x}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \mathbf{x}_{i}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu})$$
$$= n \bar{\mathbf{x}} \boldsymbol{\Sigma}^{-1} \bar{\mathbf{x}} - n \bar{\mathbf{x}} \boldsymbol{\Sigma}^{-1} \bar{\mathbf{x}} + n \bar{\mathbf{x}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - n \bar{\mathbf{x}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}$$
$$= 0$$

Hence, the last term in (9.2) vanishes.

Thus, we can now write (9.1) as

$$f(\mathbf{x}|\boldsymbol{\theta}) = \left(\frac{1}{(2\pi)^k \det(\boldsymbol{\Sigma})}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2} \sum_{i=1}^n (\bar{\mathbf{x}} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu})\right] \exp\left[-\frac{1}{2} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \bar{\mathbf{x}})\right]$$
$$= \left(\frac{1}{(2\pi)^k \det(\boldsymbol{\Sigma})}\right)^{\frac{n}{2}} \exp\left[-\frac{n}{2} (\bar{\mathbf{x}} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu})\right] \exp\left[-\frac{1}{2} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \bar{\mathbf{x}})\right]$$
(9.3)

Now, to deal with the quantity in the right-hand exponential, we notice that $(\mathbf{x}_i - \bar{\mathbf{x}})^T \mathbf{\Sigma}^{-1} (\mathbf{x}_i - \bar{\mathbf{x}})$ is a 1×1 matrix, hence we can use a trick with the trace (for which we know it obeys the cyclicity property, i.e. $\operatorname{tr}(ABC) = \operatorname{tr}(BCA) = \operatorname{tr}(CAB)$ [and clearly $\operatorname{tr}(A + B) = \operatorname{tr}(A) + \operatorname{tr}(B)$]) to turn this term into

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}}) = \operatorname{tr} \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}})$$
$$= \sum_{i=1}^{n} \operatorname{tr} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}})$$
$$= \sum_{i=1}^{n} \operatorname{tr} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}}) (\mathbf{x}_{i} - \bar{\mathbf{x}})^{T}$$
$$= \operatorname{tr} \boldsymbol{\Sigma}^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}}) (\mathbf{x}_{i} - \bar{\mathbf{x}})^{T}$$

We can now write down the statistic

$$\mathbf{T}_2(\mathbf{x}_i) = \hat{\mathbf{\Sigma}} = \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

Then we can rewrite (9.3) as

$$f(\mathbf{x}|\boldsymbol{\theta}) = \underbrace{\left(\frac{1}{(2\pi)^k \det(\boldsymbol{\Sigma})}\right)^{\frac{n}{2}} \exp\left[-\frac{n}{2}(\bar{\mathbf{x}}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}}-\boldsymbol{\mu})\right] \exp\left[-\frac{1}{2} \mathrm{tr} \boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{\Sigma}}\right]}_{g((\mathbf{T}_1(\mathbf{x}_i),\mathbf{T}_2(\mathbf{x}_i))|\boldsymbol{\theta})} \cdot \underbrace{1}_{h(\mathbf{x}_i)}$$

Thus, by the factorisation theorem, we have found sufficient statistics for the multivariate normal distribution, namely $\bar{\mathbf{x}}$ and $\hat{\boldsymbol{\Sigma}}$. It is worth pointing out that due to the more sophisticated matrix calculations we have used throughout that this has method has found sufficient statistics for a multivariate normal distribution of any N size. It is easy and tedious to express our final function in terms of the $\boldsymbol{\theta}$ provided by the question - we shall leave this as an exercise for the reader. \Box

Q10. Incompleteness of bound statistics for a uniform distribution

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim}$ Uniform $(\theta, \theta + 1), \theta \in \mathbb{R}$. We wish to show that the minimal sufficient statistic $T = (X_{(1)}, X_{(n)})$ is not complete for $A = \{f(\mathbf{x}|\theta) : \theta \in \mathbb{R}\}$, that is, there exists a function g such that $\mathbb{E}_{\theta}[g(T)] = 0 \implies P_{\theta}(g(T) = 0) = 1$

We appeal to the range statistic $R(T) = X_{(n)} - X_{(1)}$. From Example 6.2.17 of Casella and Berger, we know that R(T) is an ancillary statistic - that is, the distribution of R, which is $h(r|\theta) = n(n-1)r^{n-2}(1-r)\mathbb{1}(0 < r < 1)$, does not depend on the parameter θ . This means that $\mathbb{E}_{\theta}[R(T)] = k$ for some $k \in \mathbb{R}$, which does not depend on θ . Thus, we choose our g to be $g(T) = X_{(n)} - X_{(1)} - k$. Then clearly $\mathbb{E}_{\theta}[g(T)] = 0$. However, $P_{\theta}(g(T) = 0) = P_{\theta}(R(T) = k) = 0 \neq 1$ since $h(r|\theta)$ is a continuous distribution. Therefore we conclude that T is not a complete statistic for A. \Box

Q11. Minimal sufficiency for a scaled-shifted exponential

Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \begin{cases} \frac{1}{\theta}e^{-\frac{x-\theta}{\theta}} & x \ge \theta\\ 0 & \text{otherwise} \end{cases} = \frac{1}{\theta}e^{-\frac{x-\theta}{\theta}}\mathbb{1}(x \ge \theta)$$

where $\theta > 0$.

Part a)

We first consider the joint pdf

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-\frac{x_i - \theta}{\theta}} \mathbb{1}(x_i \ge \theta)$$
$$= \frac{1}{\theta^n} \mathbb{1}(x_{(1)} \ge \theta) e^{-\frac{1}{\theta} \sum_{i=1}^{n} x_i} e^n$$
$$= \underbrace{\frac{1}{\theta^n}}_{g(T(\mathbf{x})|\theta)} \underbrace{\mathbb{1}(x_{(1)} \ge \theta) e^{-\frac{n\bar{x}}{\theta}}}_{h(\mathbf{x})} \underbrace{e^n}_{h(\mathbf{x})}$$

We claim that $T = (x_{(1)}, \bar{x})$ is a minimal sufficient statistic for θ . By the factorisation theorem, it is clear that T is sufficient for θ . We want to show that the ratio $f(x|\theta)/f(y|\theta)$ is constant as a function of θ if and only if T(x) = T(y) to prove that it is minimal sufficient. That T(x) = T(y) implies the ratio is constant is trivial to show. Suppose that the ratio is constant, say K. Then

$$\frac{f(x|\theta)}{f(y|\theta)} = \frac{\theta^{-n}\mathbb{1}(x_{(1)} \ge \theta)e^{-\frac{n\bar{x}}{\theta}}e^n}{\theta^{-n}\mathbb{1}(y_{(1)} \ge \theta)e^{-\frac{n\bar{y}}{\theta}}e^n} = \frac{\mathbb{1}(x_{(1)} \ge \theta)}{\mathbb{1}(y_{(1)} \ge \theta)}e^{-\frac{n}{\theta}(\bar{x}-\bar{y})} = K$$

We first observe that since K is independent of θ , this implies $\lim_{x_{(1)},y_{(1)}\to\theta} \frac{\mathbb{1}(x_{(1)}\geq\theta)}{\mathbb{1}(y_{(1)}\geq\theta)}$ must be 1. Thus, $\mathbb{1}(x_{(1)}\geq\theta) = \mathbb{1}(y_{(1)}\geq\theta)$ and hence $x_{(1)} = y_{(1)}$.

This then suggests that

$$e^{-\frac{n}{\theta}(\bar{x}-\bar{y})} = K$$

But since this must be true for all θ , this implies that $\bar{x} - \bar{y} = 0$ and hence $\bar{x} = \bar{y}$. Hence, we see that $f(x|\theta)/f(y|\theta)$ is constant as a function of θ if and only if T(x) = T(y) and so T is a minimal sufficient statistic for θ . \Box

Part b)

It appears natural to believe that $X \sim f(x|\theta)$ is in an exponential family. However, we know from lectures that if X is a random variable from an exponential family, then the support set of X does not depend on on the parameter θ . Clearly, the support set of $f(x|\theta)$ depends on θ since $f(x|\theta) = 0$ if $x \leq \theta$. Therefore, we conclude that X is not in an exponential family. \Box

Q12. UMVUE of mean of a Normal

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, 1), \mu \in \mathbb{R}$.

Part a)

We want to calculate the UMVUE of μ^2 and calculate its variance. We will take it as granted that $T_1 = \bar{X}_n$ is a complete and sufficient statistic for μ . Clearly $T_1 \stackrel{i.i.d}{\sim} N(\mu, 1/n)$. We can then consider

$$\mathbb{E}_{\mu}[T_1^2] = \mu^2 + 1/n$$

$$\implies \mu^2 = \mathbb{E}_{\mu}[T_1^2] - 1/n$$

$$\implies \mu^2 = \mathbb{E}_{\mu}[T_1^2 - 1/n]$$

Clearly then, if we let $T_2 = T_1^2 - 1/n$ then $\text{Bias}(T_2) = 0$. By the Lehmann-Scheffé Theorem, since T_1 is a complete and sufficient statistic and $T_2 = T_2(T_1)$ is an unbiased estimator of μ^2 , then T_2 is the UMVUE of μ^2 .

We can then calculate the variance, where we use standard moment of normal results.

$$\mathbb{E}_{\mu}[T_{2}^{2}] = \mathbb{E}_{\mu}[(T_{1}^{2} - 1/n)^{2}]$$

$$= \mathbb{E}_{\mu}\left[T_{1}^{4} - \frac{2}{n}T_{1}^{2} + \frac{1}{n^{2}}\right]$$

$$= \mathbb{E}_{\mu}[T_{1}^{4}] - \frac{2}{n}\mathbb{E}_{\mu}[T_{1}^{2}] + \frac{1}{n^{2}}$$

$$= \mu^{4} + \frac{6}{n}\mu^{2} + \frac{3}{n^{2}} - \frac{2}{n}(\mu^{2} + 1/n) + \frac{1}{n^{2}}$$

$$= \mu^{4} + \frac{4}{n}\mu^{2} + \frac{2}{n^{2}}$$

$$\therefore \operatorname{Var}(T_{2}) = \mathbb{E}_{\mu}[T_{2}^{2}] - \mathbb{E}_{\mu}[T_{2}]^{2} = \mu^{4} + \frac{4}{n}\mu^{2} + \frac{2}{n^{2}} - \mu^{4} = \frac{4\mu^{2}}{n} + \frac{2}{n^{2}}$$

Part b)

Since X_1, \ldots, X_n are drawn from a normal distribution, it is clear that $f(x|\theta)$, $T_2, \gamma(\mu) = \mu^2$ all satisfy the necessary conditions to use the Cramér-Rao Inequality (supposing $I_n(\theta)$ is finite which we will show below). We then calculate the necessary quantities

$$I_n(\mu) = nI_1(\mu) = -n\mathbb{E}_{\mu} \left[\frac{\partial^2}{\partial \mu^2} \log f(X_1|\mu) \right] \qquad \gamma'(\mu) = 2\mu$$
$$= -n\mathbb{E}_{\mu}[-1] = n$$

Which means that $\text{CRLB}(T_2) = \frac{(\gamma'(\mu))^2}{I_n(\mu)} = \frac{4\mu^2}{n}$. Hence, as expected from the Cramér-Rao Inequality, we have

$$\operatorname{Var}(T_2) = \frac{4\mu^2}{n} + \frac{2}{n^2} \ge \frac{4\mu^2}{n} = \operatorname{CRLB}(T_2)$$

Q13. UMVUE of p^2 of Bernoulli

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim}$ Bernoulli $(p), p \in (0, 1)$ and require that n > 2. We wish to find the UMVUE of $\gamma(p) = p^2$.

We will take for granted that $T = \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic for p. We are interested in calculating $p^2 = P(X_1 = 1, X_2 = 1)$. We can then define an unbiased estimator for $\gamma(p)$ as

$$T_0 = \begin{cases} 1 & \text{if } X_1, X_2 = 1\\ 0 & \text{otherwise} \end{cases}$$

By construction, we have $\mathbb{E}[T_0] = P(X_1 = 1, X_2 = 1) = p^2$ so T_0 is unbiased for $\gamma(p)$. Now we can define $T_1 = \mathbb{E}[T_0|T]$. Then

$$\begin{split} \mathbb{E}[T_0|T=t] &= \mathbb{E}\left[T_0 \middle| \sum_{i=1}^n X_i = t\right] \\ &= P\left(X_1 = 1, X_2 = 1 \middle| \sum_{i=1}^n X_i = t\right) \\ &= \frac{P\left(X_1 = 1, X_2 = 1, \sum_{i=1}^n X_i = t\right)}{P\left(\sum_{i=1}^n X_i = t\right)} \\ &= \frac{P\left(X_1 = 1, X_2 = 1, \sum_{i=3}^n X_i = t - 2\right)}{P\left(\sum_{i=1}^n X_i = t\right)} \\ &= \frac{P(X_1 = 1)P(X_2 = 1)P(\sum_{i=3}^n X_i = t - 2)}{P\left(\sum_{i=1}^n X_i = t\right)} \mathbb{1}(t \ge 2) \\ &= \frac{p^2 \binom{n-2}{t-2} p^{t-2} (1-p)^{n-t}}{\binom{n}{t} p^t (1-p)^{n-t}} \mathbb{1}(t \ge 2) \\ &= \frac{\binom{n-2}{t-2}}{\binom{n}{t}} \mathbb{1}(t \ge 2) \\ &= \frac{(n-2)! t!}{(t-2)! n!} \mathbb{1}(t \ge 2) \end{split}$$

Thus we see that in defining

$$T_1 = \mathbb{E}\left[T_0 \middle| \sum_{i=1}^n X_i\right] = \frac{(n-2)! (\sum_{i=1}^n X_i)!}{(\sum_{i=1}^n X_i - 2)! n!} \mathbb{1}\left(\sum_{i=1}^n X_i \ge 2\right)$$

by the Rao-Blackwell theorem we know that T_1 is unbiased, and by Lehmann-Scheffé we know that it is the UMVUE for p^2 . \Box