Lie Algebras Assignment 4

Liam Carroll - 830916

Due Date: $28^{\text {th }}$ May 2021

Lecture 6

Q4. Commutator and the exponential

Let $X, Y \in \mathfrak{g l}(n, \mathbb{C})$. We will prove the following two identities:

$$
\begin{align*}
& \quad[Y, X]=\left.\frac{\partial^{2}}{\partial s \partial t}(\exp (-s Y) \exp (-t X) \exp (s Y) \exp (t X))\right|_{s=t=0} \text {, } \tag{4.1}\\
& \text { and } \quad \exp (-t Y) \exp (-t X) \exp (t Y) \exp (t X)=\exp \left(t^{2}[Y, X]+O\left(t^{3}\right)\right), \tag{4.2}
\end{align*}
$$

where $[Y, X]=Y X-X Y$ is the commutator.

Part a)

We calculate

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(e^{-s Y} e^{-t X} e^{s Y} e^{t X}\right) & =\left(\frac{\partial}{\partial t}\left(e^{-s Y} e^{-t X}\right)\right)\left(e^{s Y} e^{t X}\right)+\left(e^{-s Y} e^{-t X}\right)\left(\frac{\partial}{\partial t}\left(e^{s Y} e^{t X}\right)\right) \\
& =-e^{-s Y} X e^{-t X} e^{s Y} e^{t X}+e^{-s Y} e^{-t X} e^{s Y} X e^{t X},
\end{aligned}
$$

so taking $\frac{\partial}{\partial s}$ of the above expression gives

$$
\begin{aligned}
\frac{\partial^{2}}{\partial s \partial t}\left(e^{-s Y} e^{-t X} e^{s Y} e^{t X}\right)= & \left(\frac{\partial}{\partial s}\left(-e^{-s Y} X e^{-t X}\right)\right)\left(e^{s Y} e^{t X}\right)+\left(-e^{-s Y} X e^{-t X}\right)\left(\frac{\partial}{\partial s}\left(e^{s Y} e^{t X}\right)\right) \\
& +\left(\frac{\partial}{\partial s}\left(e^{-s Y} e^{-t X}\right)\right)\left(e^{s Y} X e^{t X}\right)+\left(e^{-s Y} e^{-t X}\right)\left(\frac{\partial}{\partial s}\left(e^{s Y} X e^{t X}\right)\right) \\
= & e^{-s Y} Y X e^{-t X} e^{s Y} e^{t X}-e^{-s Y} e^{-t X} X Y e^{s Y} e^{t X} \\
& -Y e^{-s Y} e^{-t X} e^{s Y} X e^{t X}+e^{-s Y} e^{-t X} e^{s Y} Y X e^{t X},
\end{aligned}
$$

where we have used $\frac{\partial}{\partial t} e^{t X}=X e^{t X}=e^{t X} X$ many times over. Therefore using the fact that $e^{0 X}=1$, the identity operator, we have

$$
\begin{equation*}
\left.\frac{\partial^{2}}{\partial s \partial t}\left(e^{-s Y} e^{-t X} e^{s Y} e^{t X}\right)\right|_{s=t=0}=Y X-X Y-Y X+Y X=Y X-X Y=[Y, X] \tag{4.3}
\end{equation*}
$$

Part b)

We remark that this statement will only be valid for $\|X\|,\|Y\|<\log 2$ to ensure that we can apply the logarithm at the end, so suppose X and Y satisfy this hypothesis. By

Taylor's theorem (with Lagrange remainder, where $\frac{d^{k}}{d x^{k}} e^{x}=e^{x}$ for any $k \in \mathbb{N}$) we have that for $t \in \mathbb{R}$ and some bounded operator X that there exists some $b \in[0, t]$ such that

$$
\begin{gather*}
\exp (t)=1+t+\frac{1}{2} t^{2}+\frac{\exp (b)}{6} t^{3} \\
\text { so }\left|\exp (\|X\| t)-1-\|X\| t-\frac{1}{2}\|X\|^{2} t^{2}\right|=\frac{\exp (b)}{6}\|X\|^{3} t^{3} \tag{4.4}
\end{gather*}
$$

so $\sum_{j=3}^{\infty} \frac{(\|X\| t)^{j}}{j!}=\frac{\exp (b)}{6}\|X\|^{3} t^{3}$. But then we have

$$
\begin{equation*}
\left\|\exp (X t)-1-X t-\frac{1}{2} X^{2} t^{2}\right\|=\left\|\sum_{j=3}^{\infty} \frac{(X t)^{j}}{j!}\right\| \leq \sum_{j=3}^{\infty} \frac{(\|X\| t)^{j}}{j!}=\frac{\exp (b)\|X\|^{3}}{6} t^{3} \tag{4.5}
\end{equation*}
$$

We recall from the Big O notation remark that $f(t)=O\left(t^{3}\right)$ means that there exists some $C>0$ and $\varepsilon>0$ such that whenever $t<\varepsilon$ we have $\|f(t)\| \leq C t^{3}$. So, since $\|X\|<\log 2$ by hypothesis we have for sufficiently small t that $\exp (b) \leq \exp (\|X\| t) \leq \exp (\|X\|) \leq$ $\exp (\log 2)=2$, so

$$
\left\|\exp (X t)-1-X t-\frac{1}{2} X^{2} t^{2}\right\| \leq \frac{\exp (b)\|X\|^{3}}{6} t^{3} \leq \frac{2(\log 2)^{3}}{6} t^{3}=\frac{(\log 2)^{3}}{3} t^{3}
$$

which we can write as

$$
\begin{equation*}
\exp (X t)=1+X t+\frac{1}{2} X^{2} t^{2}+O\left(t^{3}\right) \tag{4.6}
\end{equation*}
$$

by our definition of $O\left(t^{3}\right)$.
Let us denote

$$
\begin{equation*}
R_{3}(X)=\exp (X t)-1-X t-\frac{1}{2} X^{2} t^{2}=\sum_{j=3}^{\infty} \frac{(X t)^{j}}{j!} \tag{4.7}
\end{equation*}
$$

Then we know from our above analysis that $\left\|R_{3}(X)\right\| \leq(\log 2)^{3} t^{3}$ for any $\|X\| \leq \log 2$. Suppose X and Y satisfy this condition and define $\mathcal{L}=R_{3}(Y)$ and $\mathcal{R}=R_{3}(X)$. Then we calculate

$$
\begin{aligned}
\exp (t Y) \exp (t X)= & \left(1+Y t+\frac{1}{2} Y^{2} t^{2}+\mathcal{L}\right)\left(1+X t+\frac{1}{2} X^{2} t^{2}+\mathcal{R}\right) \\
= & 1+X t+\frac{1}{2} X^{2} t^{2}+\mathcal{R}+Y t+Y X t^{2}+\frac{1}{2} Y X^{2} t^{3}+Y \mathcal{R} t \\
& +\frac{1}{2} Y^{2} t^{2}+\frac{1}{2} Y^{2} X t^{3}+\frac{1}{4} Y^{2} X^{2} t^{4}+\frac{1}{2} Y^{2} \mathcal{R} t^{2}+\mathcal{L}+\mathcal{L} X t+\frac{1}{2} \mathcal{L} X^{2} t^{2}+\mathcal{L} \mathcal{R}
\end{aligned}
$$

meaning we can calculate

$$
\begin{align*}
& \left\|e^{t Y} e^{t X}-1-(X+Y) t-\left(\frac{1}{2} X^{2}+Y X+\frac{1}{2} Y^{2}\right) t^{2}\right\| \\
& =\left\|\mathcal{R}+\frac{1}{2} Y X^{2} t^{3}+Y \mathcal{R} t+\frac{1}{2} Y^{2} X t^{3}+\frac{1}{4} Y^{2} X^{2} t^{4}+\frac{1}{2} Y^{2} \mathcal{R} t^{2}+\mathcal{L}+\mathcal{L} X t+\frac{1}{2} \mathcal{L} X^{2} t^{2}+\mathcal{L} \mathcal{R}\right\| \\
& \leq\|\mathcal{R}\|+\frac{1}{2}\|Y\|\|X\|^{2} t^{3}+\|Y\|\|\mathcal{R}\| t+\frac{1}{2}\|Y\|^{2}\|X\| t^{3}+\frac{1}{4}\|Y\|^{2}\|X\|^{2} t^{4}+\frac{1}{2}\|Y\|^{2}\|\mathcal{R}\| t^{2} \\
& \quad+\|\mathcal{L}\|+\|\mathcal{L}\|\|X\| t+\frac{1}{2}\|\mathcal{L}\|\|X\|^{2} t^{2}+\|\mathcal{L}\|\|\mathcal{R}\| \\
& \leq(\log 2)^{3} t^{3}+\frac{1}{2}(\log 2)^{3} t^{3}+(\log 2)^{4} t^{4}+\frac{1}{2}(\log 2)^{3} t^{3}+\frac{1}{4}(\log 2)^{4} t^{4}+\frac{1}{2}(\log 2)^{5} t^{5} \\
& \quad+(\log 2)^{3} t^{3}+(\log 2)^{4} t^{4}+\frac{1}{2}(\log 2)^{5} t^{5}+(\log 2)^{6} t^{6} \\
& \leq 10(\log 2)^{3} t^{3} \tag{4.8}
\end{align*}
$$

where the last inequality holds for sufficiently small t such that $t^{3}<t^{4}<t^{5}<t^{6}$. Thus we may write

$$
\begin{gather*}
e^{t Y} e^{t X}=1+(X+Y) t+\left(\frac{1}{2} X^{2}+Y X+\frac{1}{2} Y^{2}\right) t^{2}+O\left(t^{3}\right) \tag{4.9}\\
\text { and } \quad e^{-t Y} e^{-t X}=1-(X+Y) t+\left(\frac{1}{2} X^{2}+Y X+\frac{1}{2} Y^{2}\right) t^{2}+O\left(t^{3}\right)
\end{gather*}
$$

We can then perform a crude calculation that is justified using an identical kind of analysis as in (4.8), with all the same hypotheses and bounds, to see that

$$
\begin{align*}
e^{-t Y} e^{-t X} e^{t Y} e^{t X}= & \left(1-(X+Y) t+\left(\frac{1}{2} X^{2}+Y X+\frac{1}{2} Y^{2}\right) t^{2}+O\left(t^{3}\right)\right)(1+(X+Y) t \\
& \left.+\left(\frac{1}{2} X^{2}+Y X+\frac{1}{2} Y^{2}\right) t^{2}+O\left(t^{3}\right)\right) \\
= & 1+(X+Y) t+\left(\frac{1}{2} X^{2}+Y X+\frac{1}{2} Y^{2}\right) t^{2}-(X+Y) t-(X+Y)^{2} t^{2} \\
& +\left(\frac{1}{2} X^{2}+Y X+\frac{1}{2} Y^{2}\right) t^{2}+O\left(t^{3}\right) \\
= & 1+\left(X^{2}+2 Y X+Y^{2}-X^{2}-X Y-Y X-Y^{2}\right) t^{2}+O\left(t^{3}\right) \\
= & 1+[Y, X] t^{2}+O\left(t^{3}\right) \tag{4.10}
\end{align*}
$$

Then we see that $\lim _{t \rightarrow 0} e^{-t Y} e^{-t X} e^{t Y} e^{t X}=1$ by the continuity of the exponential, which tells us that for t sufficiently small we have $\left\|e^{-t Y} e^{-t X} e^{t Y} e^{t X}-1\right\|=\left\|[Y, X] t^{2}+O\left(t^{3}\right)\right\|<1$, allowing us to take the logarithm of both sides due to the hypothesis that $\|X\|,\|Y\|<\log 2$, thus meaning our expression fits inside the domain. Therefore,

$$
\begin{aligned}
\log \left(e^{-t Y} e^{-t X} e^{t Y} e^{t X}\right) & =\log \left(1+[Y, X] t^{2}+O\left(t^{3}\right)\right)=[Y, X] t^{2}+O\left(\left\|[Y, X] t^{2}+O\left(t^{3}\right)\right\|^{2}\right) \\
& =[Y, X] t^{2}+O\left(t^{4}\right)
\end{aligned}
$$

For sufficiently small t we have $\left\|\log \left(e^{-t Y} e^{-t X} e^{t Y} e^{t X}\right)-[Y, X] t^{2}\right\| \leq C t^{4} \leq C t^{3}$ for some constant C, so we may replace the $O\left(t^{4}\right)$ with $O\left(t^{3}\right)$ in line with the question. Hence taking the exponential of both sides (which is valid by Lemma B1-14) we have

$$
\begin{equation*}
e^{-t Y} e^{-t X} e^{t Y} e^{t X}=\exp \left([Y, X] t^{2}+O\left(t^{3}\right)\right) \tag{4.11}
\end{equation*}
$$

Q5. Fullness of Lie functor

Let G be a matrix Lie group where every element $g \in G$ can be written as

$$
g=\exp \left(X_{1}\right) \ldots \exp \left(X_{n}\right) \quad \text { for some } \quad X_{1}, \ldots, X_{n} \in \mathfrak{g}
$$

where $\mathfrak{g}=\operatorname{Lie}(G)$ is the Lie algebra of G - that is to say, G is connected. Recall the functor defined in lectures

$$
\begin{align*}
& T: \operatorname{rep}(G) \longrightarrow \operatorname{rep}(\mathfrak{g}) \tag{5.1}\\
& X . v=\left.\frac{d}{d t}(\exp (t X) \cdot v)\right|_{t=0}=\lim _{t \rightarrow 0} \frac{\exp (t X) \cdot v-v}{t}
\end{align*}
$$

which sends a representation $\exp (t X) . v$ of G to a representation of \mathfrak{g} given by $X . v$ above. We want to show that T is full, that is it is surjective on morphisms. In other words, if $(V, \cdot V)$ and $(W, \cdot W)$ are representations of G and $\phi: V \rightarrow W$ is a linear morphism of \mathfrak{g}-representations, then it is also a morphism of G-representations. Note that while the $\cdot V$ and $\cdot W$ notation is cumbersome, we adopt it in this proof to ensure utmost clarity when dealing with many different operations.

We begin by getting all of our notation in order. Since ϕ is a linear morphism of \mathfrak{g} representations we know that

$$
\begin{equation*}
\phi\left(X \cdot{ }_{V} v\right)=X \cdot W \phi(v) \quad \text { for all } \quad X \in \mathfrak{g}, \quad v \in V \tag{5.2}
\end{equation*}
$$

We want to show that for any $g \in G$ we have $\phi\left(g \cdot{ }_{V} v\right)=g \cdot W \phi(v)$ where ϕ is the same \mathfrak{g}-representation now acting on elements of G. We start with the base case where we let $g=\exp (X) \in G$ for some $X \in \mathfrak{g}$, so we want to show $\phi\left(\exp (X) \cdot{ }_{V} v\right)=\exp (X) \cdot W \phi(v)$. Recall that for any representation \cdot_{V}, for any $g \in G$ our action $g_{\cdot V} v$ can also be denoted by an endomorphism $\alpha_{g} \in \operatorname{End}(V, V)$ where $\alpha_{g}(v)=g \cdot V v$ To this end we can define the following functions

$$
\begin{align*}
& f: \mathbb{R} \longrightarrow \operatorname{End}(V, W), \quad f(t)=\phi \circ \alpha_{\exp (t X)}, \tag{5.3}\\
& g: \mathbb{R} \longrightarrow \operatorname{End}(V, W), \quad g(t)=\alpha_{\exp (t X)} \circ \phi,
\end{align*}
$$

where \circ is composition of endomorphisms (i.e. matrix multiplication), and clearly in the second case we let $\alpha_{\exp (t X)} \in \operatorname{End}(W, W)$. Hence for any $v \in V$ we have

$$
\begin{align*}
& f(t)(v)=\left(\phi \circ \alpha_{\exp (t X)}\right)(v)=\phi\left(\alpha_{\exp (t X)}(v)\right)=\phi(\exp (t X) \cdot V v) \tag{5.4}\\
& g(t)(v)=\left(\alpha_{\exp (t X)} \circ \phi\right)(v)=\alpha_{\exp (t X)}(\phi(v))=\exp (t X) \cdot W \phi(v)
\end{align*}
$$

We have now reduced our base case to showing that $f=g$, which we can do by showing they satisfy the same differential equation.

Recall that if X and Y commute then $\exp (X+Y)=\exp (X) \exp (Y)=\exp (Y) \exp (X)$, and so since $t X$ and $h X$ obviously commute for scalars t and h, we have
$\exp ((h+t) X) \cdot V v=\exp (h X+t X) \cdot V v=(\exp (h X) \exp (t X)) \cdot V v=\exp (h X) \cdot V(\exp (t X) \cdot V v)$, where we used property R1 in the definition of a G-representation. We can then calculate

$$
\begin{aligned}
\frac{d}{d t} f(t)(v)=\frac{d}{d t}\left(\left(\phi \circ \alpha_{\exp (t X)}\right)(v)\right) & =\lim _{h \rightarrow 0} \frac{\phi(\exp ((t+h) X) \cdot V v)-\phi(\exp (t X) \cdot V v)}{h} \\
& =\phi\left(\lim _{h \rightarrow 0} \frac{\exp (h X) \cdot V(\exp (t X) \cdot V v)-\exp (t X) \cdot V v}{h}\right) \\
& =\phi(X \cdot V(\exp (t X) \cdot V v)) \\
& =X \cdot W \phi(\exp (t X) \cdot V v)=X \cdot W\left(\left(\phi \circ \alpha_{\exp (t X))(v))}\right.\right.
\end{aligned}
$$

In the second equality we used the linearity (and hence continuity) of ϕ, in the third equality we used the definition of the \mathfrak{g}-representation from (5.1), and in the fourth equality we used the fact that ϕ is a morphism of G representations. Therefore f satisfies the differential equation

$$
\begin{equation*}
\frac{d}{d t} f(t)=X \cdot W f(t) \tag{5.5}
\end{equation*}
$$

Similarly we can calculate

$$
\begin{aligned}
\frac{d}{d t} g(t)(v)=\frac{d}{d t}\left(\left(\alpha_{\exp (t X)} \circ \phi\right)(v)\right) & =\frac{d}{d t}(\exp (t X) \cdot W \phi(v)) \\
& =\lim _{h \rightarrow 0} \frac{\exp ((t+h) X) \cdot W \phi(v)-\phi(v)}{h} \\
& =\lim _{h t o 0} \frac{\exp (h X) \cdot W(\exp (t X) \cdot W \phi(v))-\phi(v)}{h} \\
& =X_{\cdot W}(\exp (t X) \cdot W \phi(v))=X \cdot W\left(\alpha_{\exp (t X)} \circ \phi\right)(v),
\end{aligned}
$$

so once again we have

$$
\begin{equation*}
\frac{d}{d t} g(t)=X \cdot W g(t) . \tag{5.6}
\end{equation*}
$$

Finally, notice that $f(0)=\phi \circ \alpha_{\exp (0)}=\phi$ and $g(0)=\alpha_{\exp (0)} \circ \phi=\phi$, so we have shown that f and g satisfy the differential equation

$$
\left\{\begin{array}{l}
\frac{d}{d t} y(t)=X \cdot W y(t) \tag{5.7}\\
y(0)=\phi
\end{array}\right.
$$

and so by Picard's theorem, using the same justification as in Theorem L4-5, we know that the solution $y(t)$ is unique, hence $f(t)=g(t)$. Evaluating at $t=1$ we have

$$
\begin{equation*}
f(1)(v)=\phi(\exp (X) \cdot v v)=\exp (X) \cdot W \phi(v)=g(1)(v), \tag{5.8}
\end{equation*}
$$

which concludes the base case. The inductive step is easy though: suppose this holds for $X_{1}, \ldots, X_{n} \in \mathfrak{g}$ so

$$
\begin{equation*}
\phi\left(\left(\exp \left(X_{1}\right) \ldots \exp \left(X_{n}\right)\right) \cdot v v\right)=\left(\exp \left(X_{1}\right) \ldots \exp \left(X_{n}\right)\right) \cdot W \phi(v) . \tag{5.9}
\end{equation*}
$$

Recall that for a G-representation we have for all $g, h \in G$ and $v \in V$ that $g \cdot(h \cdot v)=(g h) \cdot v$, so for $X_{n+1} \in \mathfrak{g}$ we have

$$
\begin{aligned}
\phi\left(\left(\exp \left(X_{1} \ldots \exp \left(X_{n}\right) \exp \left(X_{n+1}\right)\right) \cdot v v\right)\right. & =\phi\left(\left(\exp \left(X_{1}\right) \ldots \exp \left(X_{n}\right)\right) \cdot v\left(\exp \left(X_{n+1}\right) \cdot v v\right)\right) \\
& =\left(\exp \left(X_{1}\right) \ldots \exp \left(X_{n}\right)\right) \cdot W \phi\left(\exp \left(X_{n+1}\right) \cdot v v\right) \\
& =\left(\exp \left(X_{1}\right) \ldots \exp \left(X_{n}\right)\right) \cdot W\left(\exp \left(X_{n+1}\right) \cdot W \phi(v)\right) \\
& =\left(\exp \left(X_{1}\right) \ldots \exp \left(X_{n}\right) \exp \left(X_{n+1}\right)\right) \cdot W \phi(v),
\end{aligned}
$$

where we used the inductive hypothesis in the second equality and (5.8) in the third. Thus we have shown that for any $\exp \left(X_{1}\right) \ldots \exp \left(X_{n}\right)=g \in G$ we have

$$
\begin{equation*}
\phi(g \cdot V v)=g \cdot W \phi(v) \tag{5.10}
\end{equation*}
$$

and so ϕ is also a morphism of G-representations, thus T is full.

