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Lecture 6

Q4. Commutator and the exponential

Let X,Y ∈ gl(n,C). We will prove the following two identities:

[Y,X] =
∂2

∂s∂t

(
exp(−sY ) exp(−tX) exp(sY ) exp(tX)

)∣∣∣
s=t=0

, (4.1)

and exp(−tY ) exp(−tX) exp(tY ) exp(tX) = exp(t2[Y,X] +O(t3)) , (4.2)

where [Y,X] = Y X −XY is the commutator.

Part a)

We calculate

∂

∂t

(
e−sY e−tXesY etX

)
=

(
∂

∂t

(
e−sY e−tX

))(
esY etX

)
+
(
e−sY e−tX

)( ∂

∂t

(
esY etX

))
= −e−sYXe−tXesY etX + e−sY e−tXesYXetX ,

so taking ∂
∂s of the above expression gives

∂2

∂s∂t

(
e−sY e−tXesY etX

)
=

(
∂

∂s

(
−e−sYXe−tX

))(
esY etX

)
+
(
−e−sYXe−tX

)( ∂

∂s

(
esY etX

))
+

(
∂

∂s

(
e−sY e−tX

))(
esYXetX

)
+
(
e−sY e−tX

)( ∂

∂s

(
esYXetX

))
= e−sY Y Xe−tXesY etX − e−sY e−tXXY esY etX

− Y e−sY e−tXesYXetX + e−sY e−tXesY Y XetX ,

where we have used ∂
∂te

tX = XetX = etXX many times over. Therefore using the fact
that e0X = 1, the identity operator, we have

∂2

∂s∂t

(
e−sY e−tXesY etX

)∣∣∣∣
s=t=0

= Y X −XY − Y X + Y X = Y X −XY = [Y,X] . (4.3)

Part b)

We remark that this statement will only be valid for ‖X‖, ‖Y ‖ < log 2 to ensure that
we can apply the logarithm at the end, so suppose X and Y satisfy this hypothesis. By
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Taylor’s theorem (with Lagrange remainder, where dk

dxk e
x = ex for any k ∈ N) we have

that for t ∈ R and some bounded operator X that there exists some b ∈ [0, t] such that

exp(t) = 1 + t+
1

2
t2 +

exp(b)

6
t3 ,

so

∣∣∣∣exp(‖X‖t)− 1− ‖X‖t− 1

2
‖X‖2t2

∣∣∣∣ =
exp(b)

6
‖X‖3t3 , (4.4)

so
∑∞

j=3
(‖X‖t)j

j! = exp(b)
6 ‖X‖3t3. But then we have∥∥∥∥exp(Xt)− 1−Xt− 1

2
X2t2

∥∥∥∥ =

∥∥∥∥∥∥
∞∑
j=3

(Xt)j

j!

∥∥∥∥∥∥ ≤
∞∑
j=3

(‖X‖t)j

j!
=

exp(b)‖X‖3

6
t3 . (4.5)

We recall from the Big O notation remark that f(t) = O(t3) means that there exists some
C > 0 and ε > 0 such that whenever t < ε we have ‖f(t)‖ ≤ Ct3. So, since ‖X‖ < log 2
by hypothesis we have for sufficiently small t that exp(b) ≤ exp(‖X‖t) ≤ exp(‖X‖) ≤
exp(log 2) = 2, so∥∥∥∥exp(Xt)− 1−Xt− 1

2
X2t2

∥∥∥∥ ≤ exp(b)‖X‖3

6
t3 ≤ 2(log 2)3

6
t3 =

(log 2)3

3
t3 ,

which we can write as

exp(Xt) = 1 +Xt+
1

2
X2t2 +O(t3) (4.6)

by our definition of O(t3).

Let us denote

R3(X) = exp(Xt)− 1−Xt− 1

2
X2t2 =

∞∑
j=3

(Xt)j

j!
. (4.7)

Then we know from our above analysis that ‖R3(X)‖ ≤ (log 2)3t3 for any ‖X‖ ≤ log 2.
Suppose X and Y satisfy this condition and define L = R3(Y ) and R = R3(X). Then we
calculate

exp(tY ) exp(tX) = (1 + Y t+
1

2
Y 2t2 + L)(1 +Xt+

1

2
X2t2 +R)

= 1 +Xt+
1

2
X2t2 +R+ Y t+ Y Xt2 +

1

2
Y X2t3 + YRt

+
1

2
Y 2t2 +

1

2
Y 2Xt3 +

1

4
Y 2X2t4 +

1

2
Y 2Rt2 + L+ LXt+

1

2
LX2t2 + LR ,

meaning we can calculate

‖etY etX − 1− (X + Y )t− (
1

2
X2 + Y X +

1

2
Y 2)t2‖

= ‖R+
1

2
Y X2t3 + YRt+

1

2
Y 2Xt3 +

1

4
Y 2X2t4 +

1

2
Y 2Rt2 + L+ LXt+

1

2
LX2t2 + LR‖

≤ ‖R‖+
1

2
‖Y ‖‖X‖2t3 + ‖Y ‖‖R‖t+

1

2
‖Y ‖2‖X‖t3 +

1

4
‖Y ‖2‖X‖2t4 +

1

2
‖Y ‖2‖R‖t2

+ ‖L‖+ ‖L‖‖X‖t+
1

2
‖L‖‖X‖2t2 + ‖L‖‖R‖

≤ (log 2)3t3 +
1

2
(log 2)3t3 + (log 2)4t4 +

1

2
(log 2)3t3 +

1

4
(log 2)4t4 +

1

2
(log 2)5t5

+ (log 2)3t3 + (log 2)4t4 +
1

2
(log 2)5t5 + (log 2)6t6

≤ 10(log 2)3t3 , (4.8)
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where the last inequality holds for sufficiently small t such that t3 < t4 < t5 < t6. Thus
we may write

etY etX = 1 + (X + Y )t+ (
1

2
X2 + Y X +

1

2
Y 2)t2 +O(t3) , (4.9)

and e−tY e−tX = 1− (X + Y )t+ (
1

2
X2 + Y X +

1

2
Y 2)t2 +O(t3) .

We can then perform a crude calculation that is justified using an identical kind of analysis
as in (4.8), with all the same hypotheses and bounds, to see that

e−tY e−tXetY etX =

(
1− (X + Y )t+ (

1

2
X2 + Y X +

1

2
Y 2)t2 +O(t3)

)(
1 + (X + Y )t

+ (
1

2
X2 + Y X +

1

2
Y 2)t2 +O(t3)

)
= 1 + (X + Y )t+ (

1

2
X2 + Y X +

1

2
Y 2)t2 − (X + Y )t− (X + Y )2t2

+ (
1

2
X2 + Y X +

1

2
Y 2)t2 +O(t3)

= 1 +
(
X2 + 2Y X + Y 2 −X2 −XY − Y X − Y 2

)
t2 +O(t3)

= 1 + [Y,X]t2 +O(t3) . (4.10)

Then we see that limt→0 e
−tY e−tXetY etX = 1 by the continuity of the exponential, which

tells us that for t sufficiently small we have ‖e−tY e−tXetY etX−1‖ = ‖[Y,X]t2+O(t3)‖ < 1,
allowing us to take the logarithm of both sides due to the hypothesis that ‖X‖, ‖Y ‖ < log 2,
thus meaning our expression fits inside the domain. Therefore,

log(e−tY e−tXetY etX) = log(1 + [Y,X]t2 +O(t3)) = [Y,X]t2 +O(‖[Y,X]t2 +O(t3)‖2)
= [Y,X]t2 +O(t4) .

For sufficiently small t we have ‖ log(e−tY e−tXetY etX) − [Y,X]t2‖ ≤ Ct4 ≤ Ct3 for some
constant C, so we may replace the O(t4) with O(t3) in line with the question. Hence
taking the exponential of both sides (which is valid by Lemma B1-14) we have

e−tY e−tXetY etX = exp([Y,X]t2 +O(t3)) . (4.11)
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Q5. Fullness of Lie functor

Let G be a matrix Lie group where every element g ∈ G can be written as

g = exp(X1) . . . exp(Xn) for some X1, . . . , Xn ∈ g

where g = Lie(G) is the Lie algebra of G - that is to say, G is connected. Recall the
functor defined in lectures

T : rep(G) −→ rep(g) , (5.1)

X.v =
d

dt

(
exp(tX).v

)∣∣∣
t=0

= lim
t→0

exp(tX).v − v
t

,

which sends a representation exp(tX).v of G to a representation of g given by X.v above.
We want to show that T is full, that is it is surjective on morphisms. In other words,
if (V, .V ) and (W, .W ) are representations of G and φ : V → W is a linear morphism of
g-representations, then it is also a morphism of G-representations. Note that while the .V
and .W notation is cumbersome, we adopt it in this proof to ensure utmost clarity when
dealing with many different operations.

We begin by getting all of our notation in order. Since φ is a linear morphism of g-
representations we know that

φ(X.V v) = X.Wφ(v) for all X ∈ g , v ∈ V . (5.2)

We want to show that for any g ∈ G we have φ(g.V v) = g.Wφ(v) where φ is the same
g-representation now acting on elements of G. We start with the base case where we let
g = exp(X) ∈ G for some X ∈ g, so we want to show φ(exp(X).V v) = exp(X).Wφ(v).
Recall that for any representation .V , for any g ∈ G our action g.V v can also be denoted
by an endomorphism αg ∈ End(V, V ) where αg(v) = g.V v To this end we can define the
following functions

f : R −→ End(V,W ) , f(t) = φ ◦ αexp(tX) , (5.3)

g : R −→ End(V,W ) , g(t) = αexp(tX) ◦ φ ,

where ◦ is composition of endomorphisms (i.e. matrix multiplication), and clearly in the
second case we let αexp(tX) ∈ End(W,W ). Hence for any v ∈ V we have

f(t)(v) = (φ ◦ αexp(tX))(v) = φ(αexp(tX)(v)) = φ(exp(tX).V v) , (5.4)

g(t)(v) = (αexp(tX) ◦ φ)(v) = αexp(tX)(φ(v)) = exp(tX).Wφ(v) .

We have now reduced our base case to showing that f = g, which we can do by showing
they satisfy the same differential equation.

Recall that if X and Y commute then exp(X + Y ) = exp(X) exp(Y ) = exp(Y ) exp(X),
and so since tX and hX obviously commute for scalars t and h, we have

exp((h+ t)X).V v = exp(hX + tX).V v = (exp(hX) exp(tX)).V v = exp(hX).V (exp(tX).V v) ,

where we used property R1 in the definition of a G-representation. We can then calculate

d

dt
f(t)(v) =

d

dt

(
(φ ◦ αexp(tX))(v)

)
= lim

h→0

φ(exp((t+ h)X).V v)− φ(exp(tX).V v)

h

= φ

(
lim
h→0

exp(hX).V (exp(tX).V v)− exp(tX).V v

h

)
= φ(X.V (exp(tX).V v))

= X.Wφ(exp(tX).V v) = X.W ((φ ◦ αexp(tX))(v)) .
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In the second equality we used the linearity (and hence continuity) of φ, in the third
equality we used the definition of the g-representation from (5.1), and in the fourth equality
we used the fact that φ is a morphism of G representations. Therefore f satisfies the
differential equation

d

dt
f(t) = X.W f(t) . (5.5)

Similarly we can calculate

d

dt
g(t)(v) =

d

dt

(
(αexp(tX) ◦ φ)(v)

)
=

d

dt

(
exp(tX).Wφ(v)

)
= lim

h→0

exp((t+ h)X).Wφ(v)− φ(v)

h

= lim
hto0

exp(hX).W (exp(tX).Wφ(v))− φ(v)

h

= X.W (exp(tX).Wφ(v)) = X.W (αexp(tX) ◦ φ)(v) ,

so once again we have

d

dt
g(t) = X.W g(t) . (5.6)

Finally, notice that f(0) = φ ◦ αexp(0) = φ and g(0) = αexp(0) ◦ φ = φ, so we have shown
that f and g satisfy the differential equation{

d
dty(t) = X.W y(t)

y(0) = φ
, (5.7)

and so by Picard’s theorem, using the same justification as in Theorem L4-5, we know
that the solution y(t) is unique, hence f(t) = g(t). Evaluating at t = 1 we have

f(1)(v) = φ(exp(X).V v) = exp(X).Wφ(v) = g(1)(v) , (5.8)

which concludes the base case. The inductive step is easy though: suppose this holds for
X1, . . . , Xn ∈ g so

φ((exp(X1) . . . exp(Xn)).V v) = (exp(X1) . . . exp(Xn)).Wφ(v) . (5.9)

Recall that for a G-representation we have for all g, h ∈ G and v ∈ V that g.(h.v) = (gh).v,
so for Xn+1 ∈ g we have

φ
(
(exp(X1 . . . exp(Xn) exp(Xn+1)).V v

)
= φ

(
(exp(X1) . . . exp(Xn)).V (exp(Xn+1).V v)

)
= (exp(X1) . . . exp(Xn)).Wφ(exp(Xn+1).V v)

= (exp(X1) . . . exp(Xn)).W (exp(Xn+1).Wφ(v))

= (exp(X1) . . . exp(Xn) exp(Xn+1)).Wφ(v) ,

where we used the inductive hypothesis in the second equality and (5.8) in the third. Thus
we have shown that for any exp(X1) . . . exp(Xn) = g ∈ G we have

φ(g.V v) = g.Wφ(v) (5.10)

and so φ is also a morphism of G-representations, thus T is full.
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