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Background 1

Q1. Exponentials Acting

Let V be a normed space over a field F and v € V, where we may also view F as a normed
space with ||A||r = |A| for any A € F. Define the (obviously) linear transformation

N :F—V, n,(\) =M. (1.1)

Part a)

Recalling that the definition of a norm gives us ||7,(A) ||y = [|[A\v||v = |Al||v]|v, by definition
we have

v A Ao
70| 8,1y = sup {w ’ AeF st. A# 0} = sup {| ||H)\|”V ‘ AeF st. A # 0}
= sup{HvHV ’ AeF st. A# 0} = |lv|lv, (1.2)

thus proving the identity.

Part b)

We will show that there is a norm preserving isomorphism of vector spaces
Y:V—DBFV), v—n,. (1.3)

Part a) gave us this this map is indeed norm preserving since ||v|| = ||n,||. The map is
clearly linear since for all A € F we have

Y(av + Bw)(A) = Nav+pw(A) = (v + Bw)A = Aav + ABw = (any + B1w)(A) . (1.4)
To show it is bijective, we claim that
¢:BEFV)—V, [ f(1) (1.5)
is the unique inverse to 4. We compute, for all A € F,
(pov)(v) = d(m) =m(l) =v, so o =1y,
and (o @)(f)(A) = (f(1)(A) =npa)(A) =Af(1) = f(A), so Yod=1pry) (1.6)

where the last equality follows from the fact that f is linear over F, thus showing that ¢
is inverse to ¥ and hence the unique inverse, thus showing that v is bijective and hence
a norm-preserving isomorphism of vector spaces. Indeed, it is also a norm-preserving
isomorphism of normed spaces (i.e. ¥ and ¢ are both continuous), which follows from a
simple calculation to find ||¢|| = 1 and ||¢| = 1.



Part c)
Let V and W be normed spaces. Consider the evaluation map

O:BV,W)xV —W
(T,v) — T'(v).
In part b) we showed that V = B(FF, V) via a norm preserving continuous map v, which we

may easily extend to a continuous map on the product acting as the identity on B(V, W)
that makes the following diagram commute

BV,W)xV —2 s W

% % . (1.7)

B(V,W) x B(F,V) — B(F,W)

We know from Lemma B1-8 that the map V¥ is continuous. Therefore we see that ® is a
composition of continuous maps and so is itself continuous.

Part d)

Let T : V — V be a bounded linear operator on a Banach space V. We know from
Theorem B1-7 that

converges absolutely in B(V, V), that is exp(T") € B(V, V). We know by Lemma B1-8 that
for any fixed m € N the function S 27" is in B(V,V) as it is just a composition and

n=0 n!

sum of T € B(V, V). Part ¢) gave us continuity of ®, hence for a fixed v € V' we have

m
1
exp(T)(v) = ®(exp(T),v) = @ Jim ETn’”
n=0 "
1 U |
— i —qm — 1 —gm
= lim ® Z:)n!T v | = lim Z;n!T (v) |, (1.8)
n= n=

where we could pull the limit outside due to the continuity of ®, thus showing the desired
identity. [J



Q2. Trace vs determinant
We will prove that for any X € M, (C) the trace-determinant identity holds, that is
exp(tr(X)) = detexp(X). (2.1)

Since our matrix is over the algebraically closed C, by the Jordan normal form theorem,
we may write X = P~1JP for some invertible change of basis matrix P and a Jordan
normal form matrix J, where

Ai 10 0
Jio... 0 0 A 1
J=1¢0 . o|, where J=]0 0 0 (2.2)
0 ... Jk 0 0 1
0 0 0 Ai

for eigenvalues \; of X for 1 < i < k (possibly non-distinct), where the dimensions of
the Jordan block and the number of Jordan blocks are determined by quantities like the
algebraic multiplicity of the eigenvalues. By Exercise B1-3, we know that since P is a
norm-preserving isomorphism of vector spaces (since it is just a change of basis matrix)
we have

exp(X) = exp(P~1JP) = P lexp(J)P,
so detexp X = det(P!exp(J)P) = detexpJ, (2.3)

since det P~! = (det P)~! and det is a homomorphism. Therefore we may restrict our
attention to calculating exp(.J). Since J is block diagonal we have

Jro.0
0 ... J¢

We know from lectures that we can decompose J; = A\;I + N for some nilpotent N where
we set k = inf{k € N: N* = 0}. Then we have

1 1
1 ]. 5 e W
0
N\ N YV
exp(Ji) =e" [ o ¢ 1 =:eMT; (2.5)
0 0 O 1
0 0 0 0 1
We then see that
© 1 © Jro... 0
n=0 n=0 0 J;?
expJ; ... 0 eMT) L. 0
=1 o0 0 =| o 0 (2.6)
0 exp J}! 0 e T,



is an upper triangular matrix due to our calculation in (2.5). But by performing a simple
cofactor expansion we know that the determinant of an upper triangular matrix is just
the product of the diagonal entries. For notational ease we may rewrite the non-distinct
eigenvalues as \; for 1 < j < n (instead of trying to account for the varying algebraic

multiplicities of the Jordan blocks and such), and so we have
detexp X = detexp J = eM ... eM = elizt M = ) = r(PTHP) — grX (2.7)

)

where the second last equality follows the cyclicity of the trace, i.e. tr(P~1JP) =
tr(PP~1J) = trJ, which thus proves the desired identity. [J

Q3. Heisenberg

Define the matrices

010 0 00 0 01
X=|/000}|, Y=|0O01|, H=]0 0 0], (3.1)
0 00 0 0O 000
and let a € R. We see that we have
0 00 0 00 0 00
X’=10 0 0], Y?=|0 0 0 00 0f, (3.2)
000 0 00 0 00

hence each of X, Y and H are nilpotent of degree 2. Therefore we have

exp(aX) = i (aX)™ —Ig+aX+Z

. ‘ 1 o O
X = +aX =101 0],
i+ 00 1

(3

and so we similarly have

1
exp(aY)=I3+aY =10
0

o = O

0 1 0 o
al, and exp(aH)=Iz3+aH=[0 1 0] . (3.4)
1 0 0 1

We note that exp(aX) and friends are shear matrices, which suggests that X, Y, H €
M, (C) generate shear matrices in GL,,(C) via the exponential map. [

Lecture 5

Q4. Skew vs unitary

Let H be a finite dimensional inner product space and T' : H —> ‘H be a linear operator.
We want to show that T is skew self-adjoint if and only if e®” is unitary for all a € R.
Lemma L5-4 tells us that 7T is self adjoint if and only if €!®” is unitary for every o € R,
which can be translated into: (—iT') is self adjoint if and only if e'*(=*7) = 7" is unitary.
But if (—¢T") is self adjoint then (noting that we have linearity in the second entry and
conjugate linearity in the first entry of (,)) we have

(=iT)a,y) = (z,(=iT)y), so (=i){Tz,y) = (=i)(z,Ty),
so (Txz,y)=—(z,Ty), (4.1)

thus showing that (—iT") is self adjoint if and only if T is skew self-adjoint. Therefore T
is skew self-adjoint if and only if e®7 is unitary for all o € R. [



