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Background 1

Q1. Exponentials Acting

Let V be a normed space over a field F and v ∈ V , where we may also view F as a normed
space with ‖λ‖F = |λ| for any λ ∈ F. Define the (obviously) linear transformation

ηv : F −→ V , ηv(λ) = λv . (1.1)

Part a)

Recalling that the definition of a norm gives us ‖ηv(λ)‖V = ‖λv‖V = |λ|‖v‖V , by definition
we have

‖ηv‖B(F,V ) = sup

{
‖ηv(λ)‖V
‖λ‖F

∣∣∣ λ ∈ F s.t. λ 6= 0

}
= sup

{
|λ|‖v‖V
|λ|

∣∣∣ λ ∈ F s.t. λ 6= 0

}
= sup

{
‖v‖V

∣∣∣ λ ∈ F s.t. λ 6= 0
}

= ‖v‖V , (1.2)

thus proving the identity.

Part b)

We will show that there is a norm preserving isomorphism of vector spaces

ψ : V −→ B(F, V ) , v 7−→ ηv . (1.3)

Part a) gave us this this map is indeed norm preserving since ‖v‖ = ‖ηv‖. The map is
clearly linear since for all λ ∈ F we have

ψ(αv + βw)(λ) = ηαv+βw(λ) = (αv + βw)λ = λαv + λβw = (αηv + βηw)(λ) . (1.4)

To show it is bijective, we claim that

φ : B(F, V ) −→ V , f 7−→ f(1) (1.5)

is the unique inverse to ψ. We compute, for all λ ∈ F,

(φ ◦ ψ)(v) = φ(ηv) = ηv(1) = v , so φ ◦ ψ = 1V ,

and (ψ ◦ φ)(f)(λ) = ψ(f(1))(λ) = ηf(1)(λ) = λf(1) = f(λ) , so ψ ◦ φ = 1B(F,V ) (1.6)

where the last equality follows from the fact that f is linear over F, thus showing that φ
is inverse to ψ and hence the unique inverse, thus showing that ψ is bijective and hence
a norm-preserving isomorphism of vector spaces. Indeed, it is also a norm-preserving
isomorphism of normed spaces (i.e. ψ and φ are both continuous), which follows from a
simple calculation to find ‖ψ‖ = 1 and ‖φ‖ = 1.
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Part c)

Let V and W be normed spaces. Consider the evaluation map

Φ : B(V,W )× V −→W

(T, v) 7−→ T (v) .

In part b) we showed that V ∼= B(F, V ) via a norm preserving continuous map ψ, which we
may easily extend to a continuous map on the product acting as the identity on B(V,W )
that makes the following diagram commute

B(V,W )× V W

B(V,W )× B(F, V ) B(F,W )

∼=

Φ

Ψ

∼= . (1.7)

We know from Lemma B1-8 that the map Ψ is continuous. Therefore we see that Φ is a
composition of continuous maps and so is itself continuous.

Part d)

Let T : V → V be a bounded linear operator on a Banach space V . We know from
Theorem B1-7 that

exp(T ) = lim
m→∞

m∑
n=0

1

n!
Tn =

∞∑
n=0

1

n!
Tn

converges absolutely in B(V, V ), that is exp(T ) ∈ B(V, V ). We know by Lemma B1-8 that
for any fixed m ∈ N the function

∑m
n=0

1
n!T

n is in B(V, V ) as it is just a composition and
sum of T ∈ B(V, V ). Part c) gave us continuity of Φ, hence for a fixed v ∈ V we have

exp(T )(v) = Φ(exp(T ), v) = Φ

 lim
m→∞

m∑
n=0

1

n!
Tn, v


= lim

m→∞
Φ

 m∑
n=0

1

n!
Tn, v

 = lim
m→∞

 m∑
n=0

1

n!
Tn(v)

 , (1.8)

where we could pull the limit outside due to the continuity of Φ, thus showing the desired
identity.
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Q2. Trace vs determinant

We will prove that for any X ∈Mn(C) the trace-determinant identity holds, that is

exp(tr(X)) = det exp(X) . (2.1)

Since our matrix is over the algebraically closed C, by the Jordan normal form theorem,
we may write X = P−1JP for some invertible change of basis matrix P and a Jordan
normal form matrix J , where

J =


J1 . . . 0

0
. . . 0

0 . . . Jk

 , where Ji =



λi 1 0 . . . 0

0 λi 1
. . .

...

0 0
. . .

. . . 0

0 0
. . .

. . . 1

0 0 0
. . . λi


(2.2)

for eigenvalues λi of X for 1 ≤ i ≤ k (possibly non-distinct), where the dimensions of
the Jordan block and the number of Jordan blocks are determined by quantities like the
algebraic multiplicity of the eigenvalues. By Exercise B1-3, we know that since P is a
norm-preserving isomorphism of vector spaces (since it is just a change of basis matrix)
we have

exp(X) = exp(P−1JP ) = P−1 exp(J)P ,

so det expX = det(P−1 exp(J)P ) = det exp J , (2.3)

since detP−1 = (detP )−1 and det is a homomorphism. Therefore we may restrict our
attention to calculating exp(J). Since J is block diagonal we have

Jn =


Jn1 . . . 0

0
. . . 0

0 . . . Jnk

 (2.4)

We know from lectures that we can decompose Ji = λiI +N for some nilpotent N where
we set k = inf{k ∈ N : Nk = 0}. Then we have

exp(Ji) = eλi



1 1 1
2 . . . 1

(k−1)!

0
. . .

. . .
. . .

...

0 0
. . .

. . . 1
2

0 0 0
. . . 1

0 0 0 0 1


=: eλiTi . (2.5)

We then see that

exp(J) =

∞∑
n=0

1

n!
Jn =

∞∑
n=0

1

n!


Jn1 . . . 0

0
. . . 0

0 . . . Jnk



=


exp J1 . . . 0

0
. . . 0

0 . . . exp Jnk

 =


eλ1T1 . . . 0

0
. . . 0

0 . . . eλkTk

 (2.6)
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is an upper triangular matrix due to our calculation in (2.5). But by performing a simple
cofactor expansion we know that the determinant of an upper triangular matrix is just
the product of the diagonal entries. For notational ease we may rewrite the non-distinct
eigenvalues as λj for 1 ≤ j ≤ n (instead of trying to account for the varying algebraic
multiplicities of the Jordan blocks and such), and so we have

det expX = det exp J = eλ1 . . . eλn = e
∑n

i=1 λi = etrJ = etr(P−1JP ) = etrX , (2.7)

where the second last equality follows the cyclicity of the trace, i.e. tr(P−1JP ) =
tr(PP−1J) = trJ , which thus proves the desired identity.

Q3. Heisenberg

Define the matrices

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , H =

0 0 1
0 0 0
0 0 0

 , (3.1)

and let α ∈ R. We see that we have

X2 =

0 0 0
0 0 0
0 0 0

 , Y 2 =

0 0 0
0 0 0
0 0 0

 , H2 =

0 0 0
0 0 0
0 0 0

 , (3.2)

hence each of X, Y and H are nilpotent of degree 2. Therefore we have

exp(αX) =
∞∑
n=0

1

n!
(αX)n = I3 + αX +

∞∑
j=0

1

(j + 2)!
α2+jX2+j = I3 + αX =

1 α 0
0 1 0
0 0 1

 ,

(3.3)

and so we similarly have

exp(αY ) = I3 + αY =

1 0 0
0 1 α
0 0 1

 , and exp(αH) = I3 + αH =

1 0 α
0 1 0
0 0 1

 . (3.4)

We note that exp(αX) and friends are shear matrices, which suggests that X,Y,H ∈
Mn(C) generate shear matrices in GLn(C) via the exponential map.

Lecture 5

Q4. Skew vs unitary

Let H be a finite dimensional inner product space and T : H → H be a linear operator.
We want to show that T is skew self-adjoint if and only if eαT is unitary for all α ∈ R.
Lemma L5-4 tells us that T is self adjoint if and only if eiαT is unitary for every α ∈ R,
which can be translated into: (−iT ) is self adjoint if and only if eiα(−iT ) = eαT is unitary.
But if (−iT ) is self adjoint then (noting that we have linearity in the second entry and
conjugate linearity in the first entry of 〈, 〉) we have

〈(−iT )x, y〉 = 〈x, (−iT )y〉 , so (−i)〈Tx, y〉 = (−i)〈x, Ty〉 ,
so 〈Tx, y〉 = −〈x, Ty〉 , (4.1)

thus showing that (−iT ) is self adjoint if and only if T is skew self-adjoint. Therefore T
is skew self-adjoint if and only if eαT is unitary for all α ∈ R.
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