Lie Algebras Assignment 3

Liam Carroll - 830916

Due Date: $14^{\text {th }}$ May 2021

Background 1

Q1. Exponentials Acting

Let V be a normed space over a field \mathbb{F} and $v \in V$, where we may also view \mathbb{F} as a normed space with $\|\lambda\|_{\mathbb{F}}=|\lambda|$ for any $\lambda \in \mathbb{F}$. Define the (obviously) linear transformation

$$
\begin{equation*}
\eta_{v}: \mathbb{F} \longrightarrow V, \quad \eta_{v}(\lambda)=\lambda v . \tag{1.1}
\end{equation*}
$$

Part a)

Recalling that the definition of a norm gives us $\left\|\eta_{v}(\lambda)\right\|_{V}=\|\lambda v\|_{V}=|\lambda|\|v\|_{V}$, by definition we have

$$
\begin{align*}
\left\|\eta_{v}\right\|_{\mathcal{B}(\mathbb{F}, V)} & =\sup \left\{\left.\frac{\left\|\eta_{v}(\lambda)\right\|_{V}}{\|\lambda\|_{\mathbb{F}}} \right\rvert\, \lambda \in \mathbb{F} \text { s.t. } \lambda \neq 0\right\}=\sup \left\{\left.\frac{|\lambda|\|v\|_{V}}{|\lambda|} \right\rvert\, \lambda \in \mathbb{F} \text { s.t. } \lambda \neq 0\right\} \\
& =\sup \left\{\|v\|_{V} \mid \lambda \in \mathbb{F} \text { s.t. } \lambda \neq 0\right\}=\|v\|_{V}, \tag{1.2}
\end{align*}
$$

thus proving the identity.

Part b)

We will show that there is a norm preserving isomorphism of vector spaces

$$
\begin{equation*}
\psi: V \longrightarrow \mathcal{B}(\mathbb{F}, V), \quad v \longmapsto \eta_{v} \tag{1.3}
\end{equation*}
$$

Part a) gave us this this map is indeed norm preserving since $\|v\|=\left\|\eta_{v}\right\|$. The map is clearly linear since for all $\lambda \in \mathbb{F}$ we have

$$
\begin{equation*}
\psi(\alpha v+\beta w)(\lambda)=\eta_{\alpha v+\beta w}(\lambda)=(\alpha v+\beta w) \lambda=\lambda \alpha v+\lambda \beta w=\left(\alpha \eta_{v}+\beta \eta_{w}\right)(\lambda) \tag{1.4}
\end{equation*}
$$

To show it is bijective, we claim that

$$
\begin{equation*}
\phi: \mathcal{B}(\mathbb{F}, V) \longrightarrow V, \quad f \longmapsto f(1) \tag{1.5}
\end{equation*}
$$

is the unique inverse to ψ. We compute, for all $\lambda \in \mathbb{F}$,

$$
\begin{gather*}
(\phi \circ \psi)(v)=\phi\left(\eta_{v}\right)=\eta_{v}(1)=v, \text { so } \phi \circ \psi=1_{V}, \\
\text { and } \quad(\psi \circ \phi)(f)(\lambda)=\psi(f(1))(\lambda)=\eta_{f(1)}(\lambda)=\lambda f(1)=f(\lambda), \text { so } \psi \circ \phi=1_{\mathcal{B}(\mathbb{F}, V)} \tag{1.6}
\end{gather*}
$$

where the last equality follows from the fact that f is linear over \mathbb{F}, thus showing that ϕ is inverse to ψ and hence the unique inverse, thus showing that ψ is bijective and hence a norm-preserving isomorphism of vector spaces. Indeed, it is also a norm-preserving isomorphism of normed spaces (i.e. ψ and ϕ are both continuous), which follows from a simple calculation to find $\|\psi\|=1$ and $\|\phi\|=1$.

Part c)

Let V and W be normed spaces. Consider the evaluation map

$$
\begin{gathered}
\Phi: \mathcal{B}(V, W) \times V \longrightarrow W \\
(T, v) \longmapsto T(v)
\end{gathered}
$$

In part b) we showed that $V \cong \mathcal{B}(\mathbb{F}, V)$ via a norm preserving continuous map ψ, which we may easily extend to a continuous map on the product acting as the identity on $\mathcal{B}(V, W)$ that makes the following diagram commute

We know from Lemma B1-8 that the map Ψ is continuous. Therefore we see that Φ is a composition of continuous maps and so is itself continuous.

Part d)

Let $T: V \rightarrow V$ be a bounded linear operator on a Banach space V. We know from Theorem B1-7 that

$$
\exp (T)=\lim _{m \rightarrow \infty} \sum_{n=0}^{m} \frac{1}{n!} T^{n}=\sum_{n=0}^{\infty} \frac{1}{n!} T^{n}
$$

converges absolutely in $\mathcal{B}(V, V)$, that is $\exp (T) \in \mathcal{B}(V, V)$. We know by Lemma B1-8 that for any fixed $m \in \mathbb{N}$ the function $\sum_{n=0}^{m} \frac{1}{n!} T^{n}$ is in $\mathcal{B}(V, V)$ as it is just a composition and sum of $T \in \mathcal{B}(V, V)$. Part c) gave us continuity of Φ, hence for a fixed $v \in V$ we have

$$
\begin{align*}
\exp (T)(v) & =\Phi(\exp (T), v)=\Phi\left(\lim _{m \rightarrow \infty} \sum_{n=0}^{m} \frac{1}{n!} T^{n}, v\right) \\
& =\lim _{m \rightarrow \infty} \Phi\left(\sum_{n=0}^{m} \frac{1}{n!} T^{n}, v\right)=\lim _{m \rightarrow \infty}\left(\sum_{n=0}^{m} \frac{1}{n!} T^{n}(v)\right) \tag{1.8}
\end{align*}
$$

where we could pull the limit outside due to the continuity of Φ, thus showing the desired identity.

Q2. Trace vs determinant

We will prove that for any $X \in M_{n}(\mathbb{C})$ the trace-determinant identity holds, that is

$$
\begin{equation*}
\exp (\operatorname{tr}(X))=\operatorname{det} \exp (X) \tag{2.1}
\end{equation*}
$$

Since our matrix is over the algebraically closed \mathbb{C}, by the Jordan normal form theorem, we may write $X=P^{-1} J P$ for some invertible change of basis matrix P and a Jordan normal form matrix J, where

$$
J=\left(\begin{array}{ccc}
J_{1} & \ldots & 0 \tag{2.2}\\
0 & \ddots & 0 \\
0 & \ldots & J_{k}
\end{array}\right), \quad \text { where } \quad J_{i}=\left(\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \ldots & 0 \\
0 & \lambda_{i} & 1 & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & 0 \\
0 & 0 & \ddots & \ddots & 1 \\
0 & 0 & 0 & \ddots & \lambda_{i}
\end{array}\right)
$$

for eigenvalues λ_{i} of X for $1 \leq i \leq k$ (possibly non-distinct), where the dimensions of the Jordan block and the number of Jordan blocks are determined by quantities like the algebraic multiplicity of the eigenvalues. By Exercise B1-3, we know that since P is a norm-preserving isomorphism of vector spaces (since it is just a change of basis matrix) we have

$$
\begin{array}{r}
\exp (X)=\exp \left(P^{-1} J P\right)=P^{-1} \exp (J) P, \\
\text { so } \quad \operatorname{det} \exp X=\operatorname{det}\left(P^{-1} \exp (J) P\right)=\operatorname{det} \exp J, \tag{2.3}
\end{array}
$$

since $\operatorname{det} P^{-1}=(\operatorname{det} P)^{-1}$ and det is a homomorphism. Therefore we may restrict our attention to calculating $\exp (J)$. Since J is block diagonal we have

$$
J^{n}=\left(\begin{array}{ccc}
J_{1}^{n} & \ldots & 0 \tag{2.4}\\
0 & \ddots & 0 \\
0 & \ldots & J_{k}^{n}
\end{array}\right)
$$

We know from lectures that we can decompose $J_{i}=\lambda_{i} I+N$ for some nilpotent N where we set $k=\inf \left\{k \in \mathbb{N}: N^{k}=0\right\}$. Then we have

$$
\exp \left(J_{i}\right)=e^{\lambda_{i}}\left(\begin{array}{ccccc}
1 & 1 & \frac{1}{2} & \cdots & \frac{1}{(k-1)!} \tag{2.5}\\
0 & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & \frac{1}{2} \\
0 & 0 & 0 & \ddots & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)=: e^{\lambda_{i}} T_{i}
$$

We then see that

$$
\begin{align*}
\exp (J) & =\sum_{n=0}^{\infty} \frac{1}{n!} J^{n}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\begin{array}{ccc}
J_{1}^{n} & \ldots & 0 \\
0 & \ddots & 0 \\
0 & \ldots & J_{k}^{n}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\exp J_{1} & \ldots & 0 \\
0 & \ddots & 0 \\
0 & \ldots & \exp J_{k}^{n}
\end{array}\right)=\left(\begin{array}{ccc}
e^{\lambda_{1}} T_{1} & \ldots & 0 \\
0 & \ddots & 0 \\
0 & \ldots & e^{\lambda_{k}} T_{k}
\end{array}\right) \tag{2.6}
\end{align*}
$$

is an upper triangular matrix due to our calculation in (2.5). But by performing a simple cofactor expansion we know that the determinant of an upper triangular matrix is just the product of the diagonal entries. For notational ease we may rewrite the non-distinct eigenvalues as λ_{j} for $1 \leq j \leq n$ (instead of trying to account for the varying algebraic multiplicities of the Jordan blocks and such), and so we have

$$
\begin{equation*}
\operatorname{det} \exp X=\operatorname{det} \exp J=e^{\lambda_{1}} \ldots e^{\lambda_{n}}=e^{\sum_{i=1}^{n} \lambda_{i}}=e^{\operatorname{tr} J}=e^{\operatorname{tr}\left(P^{-1} J P\right)}=e^{\operatorname{tr} X}, \tag{2.7}
\end{equation*}
$$

where the second last equality follows the cyclicity of the trace, i.e. $\operatorname{tr}\left(P^{-1} J P\right)=$ $\operatorname{tr}\left(P P^{-1} J\right)=\operatorname{tr} J$, which thus proves the desired identity.

Q3. Heisenberg

Define the matrices

$$
X=\left(\begin{array}{lll}
0 & 1 & 0 \tag{3.1}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad H=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and let $\alpha \in \mathbb{R}$. We see that we have

$$
X^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \tag{3.2}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad Y^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad H^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

hence each of X, Y and H are nilpotent of degree 2. Therefore we have

$$
\exp (\alpha X)=\sum_{n=0}^{\infty} \frac{1}{n!}(\alpha X)^{n}=I_{3}+\alpha X+\sum_{j=0}^{\infty} \frac{1}{(j+2)!} \alpha^{2+j} X^{2+j}=I_{3}+\alpha X=\left(\begin{array}{ccc}
1 & \alpha & 0 \tag{3.3}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and so we similarly have

$$
\exp (\alpha Y)=I_{3}+\alpha Y=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{3.4}\\
0 & 1 & \alpha \\
0 & 0 & 1
\end{array}\right), \quad \text { and } \quad \exp (\alpha H)=I_{3}+\alpha H=\left(\begin{array}{ccc}
1 & 0 & \alpha \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We note that $\exp (\alpha X)$ and friends are shear matrices, which suggests that $X, Y, H \in$ $M_{n}(\mathbb{C})$ generate shear matrices in $\mathrm{GL}_{n}(\mathbb{C})$ via the exponential map.

Lecture 5

Q4. Skew vs unitary

Let \mathcal{H} be a finite dimensional inner product space and $T: \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator. We want to show that T is skew self-adjoint if and only if $e^{\alpha T}$ is unitary for all $\alpha \in \mathbb{R}$. Lemma L5-4 tells us that T is self adjoint if and only if $e^{i \alpha T}$ is unitary for every $\alpha \in \mathbb{R}$, which can be translated into: $(-i T)$ is self adjoint if and only if $e^{i \alpha(-i T)}=e^{\alpha T}$ is unitary. But if $(-i T)$ is self adjoint then (noting that we have linearity in the second entry and conjugate linearity in the first entry of \langle,$\rangle) we have$

$$
\begin{gather*}
\langle(-i T) x, y\rangle=\langle x,(-i T) y\rangle, \quad \text { so } \overline{(-i)}\langle T x, y\rangle=(-i)\langle x, T y\rangle, \\
\text { so }\langle T x, y\rangle=-\langle x, T y\rangle, \tag{4.1}
\end{gather*}
$$

thus showing that $(-i T)$ is self adjoint if and only if T is skew self-adjoint. Therefore T is skew self-adjoint if and only if $e^{\alpha T}$ is unitary for all $\alpha \in \mathbb{R}$.

