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Lecture 3

Q1. Everything rotates
Part a)

Consider the map

T : 52 x [0,27) — SO(3) (1.1)

(A, ) — R®

where for a unit vector n = prszg(el) (for 0 < 0 < mand 0 <9 < 27) and angle
2
a € [0,27) we define

R}, = RyRy . RLR% ,R*,. (1.2)

Note that here R;i is the rotation matrix about the axis e; (i.e. x,y,z) of angle 3, as
defined in (L3, p8). Our task is to show that ¥ is surjective - that is, given an arbitrary
element A € SO(3), we want to show that A = R? for some a and 7.

Let A € SO(3), then A : R? — R3 satisfies (Ax, Ay) = (x,y) for all vectors z,y € R3
(where (z,y) = 322 | z;4:), and also det(A) = A\ AgA3 = 1 where ); are the eigenvalues of
A. We first show that at least one eigenvalue satisfies A = 1 (without loss of generality).
Suppose v is an eigenvector of A, then Av = A\v for some eigenvalue A € C so

(v,v) = (Av, Av) = (M, Av) = A\ (v,v), so |[A| =1 for all eigenvalues. (1.3)

Since A is a real-valued matrix, its characteristic polynomial P(X) = Z?:o a; X7 will be
a cubic with real coefficients a; € R, hence has at least one real root. As such, at least one
eigenvalue is real, say A1 € R, and so by (1.3) we have \; = £1. Since det(A) = A\A2A3 =1

we are then in two cases.

If A1, A2, Az are all real, then each \; € {—1,1}. But if \; = —1 for all i then A\j Ao A3 = —1,
hence a contradiction, so at least one \; must be 1, say A\ = 1. If A9 and A3 are both
non-real, since A Aghg = e/ (1+02103) — £0i — 1 we must have 6 + 6 + 5 = 0. But by the
complex conjugate root theorem, since P(X) has real coefficients the roots must come in
complex conjugate pairs, so f3 = —f3 and so #; = 0, hence A\; = 1. Therefore, at least one
eigenvalue satisfies A\ = 1.

We may then consider how A acts on an arbitrary vector n € R?, which we may re-
strict to unit vectors n since we are working on the sphere. By the above, there is some



unit vector such that An = 7. For the moment, suppose that we happened to have i = ey.
Then since Ae; = eq, the first column of A must be e itself. But then since A is orthog-
onal we have A=! = AT and so e; = A '4e; = A~ le; = ATeq, and so the first column
of AT must also be e;, which is to say the first row of A is e; too. In other words, we
necessarily have

1 0 0
A=10 as ass| . (1.4)
0 a3z as3

Let B : R? — R? denote the bottom right block matrix in (1.4). Then we have 1 =
det(A) = det(B) by the usual cofactor expansion, and since AT A = 13, we see by basic
operations with block matrices that we must also have BT B = 13, hence B € SO(2). As
such, B must have the standard form of a 2 x 2 rotation matrix since both rows must be
orthogonal unit vectors that are norm preserving, hence we have

1 0 0
A=10 cosa —sina| =R*

> for some a € [0,27). (1.5)
0 sina cosa

Now instead suppose that 1 = R;R‘zi% (e1) is an arbitrary unit eigenvector of A for some

1, 0. Then we can write e; = R%_eRz ¢ﬁ, and so since An = n we have
2

A(beR‘g_gel) = (R@Rz_gel) SO (R%_eRiwAbeRz_%)el =e. (1.6)

Since SO(3) is a group, hence closed under composition, we see that the product on the
left is of the form R% as in (1.5). Hence we can rearrange to find

A=RyRy -RLR% R, = R} (1.7)

and so we are done - V¥ is indeed surjective.

For continuity of ¥, we first note that the sphere S? can be defined via a quotient
([0,7] x [0,27))/ ~ that identifies each point on the boundary of the rectangle to be
equivalent. More explicitly, we first wrap the (6,1) square into a cylinder, and then iden-
tify each point on the circular ends with a single point, given by the following equivalence
relation

(0,0) ~ (0,2m),  (0,¢) ~(0,¢') and (m,¥)~ (m,¢) (1.8)
for all 6 € [0,7], 4, €[0,2n).

This equivalence relation can be shown to be homeomorphic to the sphere S? = {z €
R? | ||x|| = 1}, but we leave this as an exercise to the reader as this is not a topology
course.

We can then extend this equivalence on (%) € S? to be one on (6,v,a) € S? x [0,27)
denoted ~', which is merely ~ on the first two components and the identity (i.e. for
ag,ag € [0,27), a ~ g iff a3 = a9) in the third component. In doing this, we may
appeal to the universal property of the quotient, which says in the case of the following
diagram,

[0,71] x [0,27) x [0, 27) L; SO(3) —— M;3(C) = C?
lq (1.9)
([0,7] x [0,27) x [0,27))/ ~



if we have a continuous map g that preserves the equivalence relations (i.e. if a ~ b implies
g(a) = g(b)) then there exists a unique continuous map f such that the above diagram
commutes. So we check: if (6,0, a) ~ (0,27, ) then

9(0,0,a) = RSR‘Z,%RZ;R%,@ 5= Rz,ngRyg,g
= ;WR‘gingyRygieRf% =g(0,27, ). (1.10)
If (0,4, ) ~ (0,7, ) then

g(Oa wy a) = prRy,%RgR% Rz_w

cosa —sina 0
= | sina cosa 0| =RZ=g(0,¢ a) (1.11)
0 0 1

and so we see there is no ¥ dependence, hence we have ¢(0,1,a) = ¢(0,v¢’, a) (we would
have provided the entire calculation to get to this point, but it simply did not fit in the
margin - literally! I can provide photographic evidence if you don’t believe me...). Finally
we have the case (7,1, a) ~ (7,9, a) where

g(ﬂ-v wa a) = beR% RgRy_ng_u,

cosa sina O
= | —sina cosa 0| =R?,=g(m ¢, a) (1.12)
0 0 1

and so once again with no ¥ dependence we have our required property of g!

Before concluding that f in (1.9) is indeed continuous we need to ensure that ¢ is con-
tinuous. But this is straight forward when SO(3) is endowed with the C° topology as
each entry is just a sum and product of trigonometric functions on the cuboid (with no
singularities to worry about) and hence is clearly continuous. Therefore we see that f
is continuous and so by the universal property of the quotient space we see that (1.1) is
continuous and so we are done. [

Part b)

We may then define an equivalence relation on S x [0, 27) via (7, a) ~ (1, B) if R? = Rg”.
To give an explicit description of the relation ~, suppose Rﬁ = Rg‘. Intuitively we expect

7 to be the eigenvalue of R” but we should make sure. We may first observe from part
a) that A = 1 is guaranteed to be an eigenvalue of R? and so there is some vector v € R3
such that R?v = v. Suppose first that 7 = e, hence this has the form

U1 1 0 0 V1 U1
vo |l =10 cosa —sina vg | = | cosavy —sinawvs | . (1.13)
V3 0 sina cosa U3 sin awy + cos awvs

Hence we see that v; is a free parameter, but in solving for vs from both equations we find

sin «v 1 —cosa
v9 = ——v3 and v9 = ——— 3. (1.14)
cosa — 1 sin «v



In order for this to be consistent the coefficients must be equal, but if this was the case
then we would have

3
9 2 .

2

sinfa = —cos?a+2cosa—1, so cosa=0, so o= (1.15)

oS

But since we desire an eigenvector for all «, this is a contradiction and so we must have
vy = 0 and v3 = 0 (which is also true in the specific non-contradictory cases of « as solved
above). Hence our eigenvector of RSl is v = ke; for some k € R, but then since we only
care about unit vectors on the sphere we have k = +1 and so v = ey or v = —ej.

For the eigenvector w in the general case Rz we have, using the invertibility of our rotation
matrices,

Py Yy Y _ Y _ py
Riw = R;Re_ngR%_eRz_d,w =w, S0 Ri(R%_eRi¢w) = R%_eRz_d)w. (1.16)
Hence we see that Rz’éieRi HW is an eigenvector of R? and so we must have
2
Y _ _ Yy I
R%_(,R’iww =Z4e; so w= inpRg_%el =4n. (1.17)

Recall that the dimension of the eigenspace corresponding to A = 1 is either 1 or 3 from
part a). But if its dimension was 3 then R would be the identity matrix and hence triv-
ial, in other words if @« = 0 or § = 0 then nothing can be said about the relation of 7 and .

Supposing that we are in the non-trivial case, we must have a dimension 1 eigenspace.
But then since Ry = R, it must be that 1 = £m!

In the first case, now suppose that Rz = Rg for some angles «, 8 € [0,27) and some
fixed unit vector 7. Then we have

z Y T Y z _ z Y x PY ¥4
RyRy -RLRY ,R*, = RyRy -RERY R,
€T z PY —1 pz PY T PY z Y z -1 _ pz
so Ry =(RyRy ) 'RyR)_-RERY ,R*,(RY_,R”,)"' = RE.

By comparison with the explicit matrix forms of R’ and R we see that we require
cosa = cos 8 and sin « = sin f meaning that o = § € [0, 27).

In the case where Rz = Rgﬁ, the presence of the negative will simply reverse the ori-
entation of rotation (easy to see with the right hand rule) which gives the simple relation

a=2r—0, (1.18)

making suitable adjustments for principal arguments and such. Therefore we define the
equivalence relation to be

n=m and o=

™

O (1.19)
n=-m and a=27—0

(7, @) ~ (i, B) if {



Q2. (C>*(W) is a sheaf

To define S? properly, we consider two homeomorphisms that parametrise the sphere in
different ways, namely

§:(0,7) x (0,21) — S2, J(0,1) = (sinf cos 1), sin O sin 1, cos 0) (2.1)
and % : (0,7) x (0,27) = S?, U, ") = (—sin@ cost, cos @, sin @' siny)’)
We may then define U := im(j) and V := im(j**). Given an open set W C S2, C°(W)

denotes the set of all smooth functions, that is continuous functions f : W — R such that
floaw € C52(UNW) and flyqy € C']Zf’lt(V N W), where we define

CRUNW)={feCts(UNW,R) | fojeC®[(UNW)}, (2.2)
(VW) ={f € Cts(VNW,R) | foj* € C®(F" 1 (V nW))}.

Here C*°(j1A) refers to the usual smoothness in R?, that is, infinitely differentiable
functions. Our goal is to show that C°° (W) is a sheaf, so time to get gluing!

Part a)

Let W/ C W be open and let f € C>®(W), we want to show that f|,, € C°(WW’).
First consider (fly)|;qws = flyaw Which we want to show is in C7°(U N W'). It is
clearly in Cts(U NW’) since f € CX(UNW) C Cts(UNW,R) and UNW' CUNW.
If € 775U NW'), then j(z) €e UNW' C UNW and so x € j~5U N W'), hence
FTHUNW) C 75U NW). Hence we have the following diagram

YU AW —s YT A W) iR (2.3)

W

Clearly the inclusion ¢ is infinitely differentiable, and so by the chain rule and the fact
that f|yw © J is infinitely differentiable by assumption, we have that f| 0 J €
C®(~HUNW')) and so f|yqp € C5°(U NW'). The same argument holds for 72 and
so fly, € C®(W').

Part b)
Let W C S? be open and suppose {Ws}aca is an open cover of W (that is, for every
a € A, W, is an open subset of W and |J,cp Wa = W), and let {fa}aca be a family of
functions f, € C°°(W,) such that

fa‘WamWB - fﬁ‘WamWﬁ for all o, 3 € A. (2.4)
We will show that there exists a unique f € C°°(W) such that f|,, = f, for all a € A.

The essence of this question lies in the fact that smoothness is a local property that glues
together exceptionally well due to its neighbourhood based definition. In other words, if
smooth functions don’t form a sheaf, then what hope do we have that anything else will?

As such, we can simply define a function f : W — R that takes a given x € W, which by



the definition of our open cover must be contained in some W,, and use the above gluing
property to define

for z e Wy, f(x)= falz). (2.5)

This is all well and good to write down, but clearly the trick is in showing f is well defined.
It is clear that the codomain is indeed R as this is inherited from the f,’s. Suppose that
we had some x € W, N W3 for some a # € A, meaning we could have f(z) = fo(x) or
alternatively f(x) = fg(x). But by the gluing property we have

fa(@) = falwaow, (@) = faly,qw, (@) = f5(z) (2.6)

thus showing that either of the two “possible” definitions of f(z) for this given x value
agree, hence f(x) itself is well defined. It is also clear by our definition that fl,, = fa
for any o € A. To see that f is unique, suppose there was another g : W — R such that
glw,, = fa for all @ € A. Then for some x € W, C W we have

9(x) = glw, (x) = fa(x) = f(2) (2.7)

thus showing that f = g and so f is unique. It remains to show that f is in C*°(W).

We are given that each f, € C*®(W,,), which is to say that f,oj € C®(j (W, NU)) as

above. That is, (fy 0 j)‘jfl(wamU) is a smooth function. But by definition we have

(f Oj)‘jfl(WmU) = f’WaﬂU ° j|j—1(WomU) = fa|WamU © j|j—1(WamU) = (fa oj)‘jfl(WmU) :
(2.8)

So far this is only defined on W, whereas we require foj € C®(j~1{(W NU)). But since
W = Uyer Wa we have

f’WﬂU = f‘(UaWa)ﬂU = f‘ua(WaﬂU) : (2.9)

Given an x € WgNU for some 3 € A we may then take some open neighbourhood A C Wp
about z and write

f|Aﬁ(ua(WaﬁU)) = f|AmWﬂmU ) (2.10)

where we note the same well-defined property holds as above allowing us to just take one
Wjs. Thus, applying (2.8) we have

(f Oj)‘j—l(WﬁUﬁA) = (fﬁ Oj)‘j—l(WBnUﬂA) (211)

for some 5 € A. Since the right hand side is smooth at z by our assumption on {fq}a we
have smoothness at each point 2 € W. That is, foj € C®(~Y(W NU)). We can apply
the exact same logic to the j2!* based conditions and thus we have that our chosen f is in
C*(W). Therefore C*°(W) is a sheaf. [J



Q3. Laplace vs Laplace

Let f be a smooth function on R?. We want to prove the following Laplacian identity

190 5 0f
Apsf = 7“725 < o ) —+ AS2f = Lf (3.1)
where we define
H? 92 0?
Aps f = <8x2+8y2+822>f’ (3.2)
1 of 1 0*f
and - Asf = 5000 <Sm686> T mZo 092 (3:3)

under the following parameterisation in spherical coordinates:

x(r,0,1) =rsinfcostp, y(r,0,¢)=rsinfsiny, z(r,0,9)=rcosd (3.4)
where r €[0,00), 6€[0,7], ¢ €]0,27).

We first calculate basic derivatives of the above coordinates,

or . Wy _ o 0z _
o = sin 6 cos o sin 0 sin Y o cosd

Ox dy . 0z .
%—TCOSHCOS#J %—rcosesmd) %——rsm@ (3.5)
gz:—rsinﬁsini/) gz:rsinecosw gzzo.

To calculate 2 e L for each ; = r ,0,1% we can appeal to the chain rule for multivariable
functions, namely

0
8951-

of 0 of 0 of 0
£, 0.0),5(r,0,0),2(r.0,0) = L2 &jj Y

Thus we can begin the painful process of calculating the many terms in the expression
(3.1). Firstly we have
0% f 0 ( af

——rsinfsiny + gr sin 6 cos
Ox oy

o2
2 2

— —%(r sin ¢ cos ¢) — (rsin f'sin)) [gxé(_r sin 0sin ) +

[
8y6:pr sin 6 cos vy

2 2
_gij(rsiHOSinw)—l—(rsinﬁcosLb) aigy( rsm@smw)—l—g2rsm{9cosw]
52
:—rsinﬁcosv,bg—rsinﬁsinwaf—i—r sin? 6 sin? ¢ f—l—r sin? 6 cos? w f
ox oy
2f
— 22 sin Gsmwcosw (3.7)

..and this was the easy one.



We then turn to

0 (sin08f> = ;0 (sin@ [af(r cos B cos 1)) + g;j(r cosfsinv) — gir sin 9])

20 a0 O
= r cos 26 cos 1,[)% ~+ 7 cos 26 Sinwg — 2sin 6 cos 9%
oz oy 0z
L sinBeosBeos s | L (rcos0cos ) + I (r cos 0sins) — I sind
rsinf cosfcosy | =5 (rcosf cos g0 rcosfs 5200 S
: : o’ f o f : f .
+ rsinf cos f sin ) [axay(rcosﬁcosw + 8—y2(rcosﬁsmw) - azayrsm9
82f 82f 82
rsin” 6@ [81‘82 (rcos@cosv) + 907 (rcos@sin) 5.2 7 sin @
= r cos 26 cos 1/)% + 7 cos 26 singbg — 2rsin 6 cos 9%
ox oy 0z
2 2 2
+ 72 sin 0 cos? 6 cos? w% + 72 sin 0 cos? 0 sin? wgy]; + 72 sin® 9%
2 2
+ 272 sin 6 cos? 0 sin v cos waigy — 2r%sin® 6 cos 6 cos w@ié)fz
— 2r%sin” ) cos 0 sin 1) Of (3.8)
oyoz '
Through gritted teeth, we then finally have
gr (rzgf) = ; <r2 sianoswg‘gi + 72 siHQSinwg'jj + 72 cos 92‘2)
=2r sin@cosq/}g + 2r sin9sinwa—f + 2r cos Hg
ox oy 0z
2 2 2
+r2sinf cos [sinﬁcos %Z)% + sianinz/);yafx + cos 98820{13]
2 2 2
+r2sinfsiny [sichosz/Jaé;afy + sin 6 sin wgyé + cos Haazgy]
2 2 2
+7r%cosf [sinﬂ COS¢88:E6fz + sin @ sind)ayafz + cos 9%
=2r sin@coswg + 2r sin&sinwa—f + 2r cos Hg
Ox oy 0z
2 2 2
+ 72 sin? 6 cos? @b% + 72 sin? @ sin? wgyjs + 72 cos? 9%
o0 f 0*f
2 2 2 : 2 2 .
+ 2r“sin Hsmiﬁcoswaxay—i— r sm@cos@coswamaz
2 . o OPf
+ 2r“sinf cos 0 sin (3.9)

Oydz



WEell that took a lot of blood sweat and tears. Putting all of this together and performing
the necessary divisions we thus have

2 2
Lf:isin&coswg“i+isin0sinwg‘§+2 seg‘f+s1n 0 cos? ¢7f+sm 0 sin” @bgy]; QGZJZP
2 2 2
1 28in? QSin“ﬁCOSd’aiafy + 2sin 6 cos 0 cos 1 aaf —|—2$in¢9008981nd)88y8fz
. 2 2
+c082€coswg cosQQsmw% 2cos€8f 052 0 cos? ¢ f—i—cos Hsmzw f+sin29ﬂ
rsing  Ox rsinf Oy r0z 0"

0’ f 0% f 0’ f
2 . . . . . .
+ 2cos Gsmwcoswaxay 2sm00086?coszpamaz 281n000s981nway32

. 92 0?
B cosy Of Slli”/J 3f 1/] f 5 + cos ¢ f 2s1n¢COS@Z) f
rsinf dxr rsind 8y

B 2sin? 0 cos ¢ + (cos?  — sin? 9)cosw—cos¢8i+ 2 sin® Gsmw—I—(00829—51n29)sin¢—sin¢1)g

rsinf ox rsinf dy
2 -2 2
+M6f + (25111 0 sin v cos 1) + 2 cos? 081nwcos¢—281nd)0081/)) of
r 0z 0xdy
—I—(2sin6?cosﬁcosw—QSiHHCOSQCOSw) O + (2sinecosﬁsinzp—QSinecosﬁsinw) of
0x0z 0yoz
.2 2 2 2 o O 2 2 2f
+(sm 0 cos” Y + cos” f cos” 1 + sin zp)ﬁ—k(sm 6 sin? 1) + cos? 0 sin? i) + cos? zp)
x
2
+ (cos29+sin2 G)ZZJ;
_Pf L 2F S
—+ =+ . 1
 Ox? + Oy? + 022 (3.10)

The last equality is due to repeated use of the Pythagorean identity, causing most terms
to be 0. We offer praise to the mathematical gods that no arithmetic mistakes foiled us
and we have indeed arrived at the identity promised in (3.1). Curse you, Mr Lecturer,
curse you... []



Lecture 4

Q4. Families of Operators

Let V be a finite dimensional vector space with d = dimc(V'), and let Endc (V') denote
the C-vector space of linear operators on V. Given an ordered basis 8 of V' there is an
isomorphism of vector spaces sending an operator to its matrix, that is

Cj : Ende(V) — My(V),  Ca(T) = [T15. (4.1)

For an open subset U C R™ we say that a function f : U — End¢(V) is smooth, that is
f € C>®(U,Endc(V)), if the composite

U L5 Ende (V) 2 My(C) =5 P (4.2)

is smooth, in other words, the entries of the matrix [f (u)]g are smooth functions of u.

We may then define for 1 < i < n a C-linear operator 8%1 : C®°(U,Endc(V)) —
C*(U,Endc(V)) to be the following composite

of— - C7lo(-)
C(U, Ende(V)) “E57 0% (U, My(C)) 225 02U, Mg(C)) =5 O (U, Ende(V)

(4.3)

where % acts on matrices of functions entry-wise, that is, if f : U — My(C) is identi-

fied with a matrix (f;r(u)) of functions then the derivative is ((%i(fjk)). Now that the
definitions are out of the way, let’s get down to business.

Part a)

In all of the notation as above, suppose f : U — Endc(V) is smooth with respect to
some basis B of V, and let 3’ be some other basis of V. Since V is a finite dimensional
vector space, we may find a change of basis matrix P € My(C) that takes a vector u € V
expressed in terms of the basis 3 and produces the same vector in terms of 3, that is,

[ul g = [P]5 uls - (4.4)

Such a matrix P is deterministic with constant entries p;;, € C. Hence we may express
[Fl = PTHF ()P (4.5)

where the entries of [f (u)]gi are C-linear combinations of those in [f (u)]g Scalar mul-

tiplication and addition are smooth functions, hence the entries of [f (u)]g: are smooth
functions of v and so f is smooth with respect to the other arbitrary basis 3’. Hence f is

smooth with respect to some basis § if and only if it is smooth with respect to any basis.
O

Part b)

We can then show that 8%2_ : C*°(U,Endc(V)) — C*°(U,End¢(V)) is independent of the
basis 8 used to define it. Suppose we had defined B%i via some other basis 5’ of V, then

10



by (4.5) the composite in (4.3) for f € C*°(U,End¢(V')) becomes
Gt (5Co 1) = €3t (5 P U @ER)) = €51 (P P )

=%ﬂq5;wr>=£/w=my<£ywno-@m

/8/

Here 57- 9_f(u) refers to the element of C*°(U,Endc(V)). In the second equality we have

used the linearity of = Do since P is deterministic as before. Hence we see that 6% is
independent of the choice of basis on V and is thus well defined on C*(U,Endc(V)). O

Part c)

We may show that the vector space C*°(U, End¢(V)) is a C-algebra by defining a binary
operation C*° (U, End¢(V)) x C*°(U,Endc(V)) — C°°(U,Endc(V)) as

(f9)(u) == f(u) o g(u) = F(u)G(u). (4.7)

For the purposes of this question we may view f(u) and g(u) in their isomorphic matrix
forms where Cg(f(u)) = F = F(u) and similarly for G and H below, meaning that this
composition is merely matrix multiplication, i.e. Cg(f(u)o g(u)) = FG. To see that the
operation is well defined, that is, the composite is indeed an element of C*°(U, End¢(V)),
we note that

[FG (7 Zsz ka( ) (4-8)

k=1

and so since each Fj(u) and Gy;(u) is a smooth function of u by definition, the linear
combination of products Fj;(u)Gy;j(u) will also be smooth, hence the binary operation is
well defined.

We can then show that our operation is left distributitive: let f,g,h € C°°(U, Endc(V))
and u € U, then

((f +9)h)(u) = (f + g)(u) o h(u) = (f(u) + g(u)) o h(u)
> (F+G)H = FH + GH = (f(u) o h(uw)) + (g(u) o h(u)), (4.9)

thus the operation is left distributitive. Right distributitivity follows immediately from an
identical calculation. Thus we just need to show compatibility with scalars: let {,v € C
and f, g as before, then we have

(€ (vg)(u) = (Cf)(u) o (vg)(u) = (CF)(vG)
= (VPG = (¢7)(f(u) o g(u)) = (¢7)(fg)(u), (4.10)

hence showing compatibility with scalars. Thus, C*°(U,End¢(V)) is a C-algebra due to
inheritance of the properties of matrix multiplication. [J

Part d)

Let f,g € C®°(U,Endc(V)). We want to show that 8%1_ satisfies the Leibniz rule, that is,

(7)) = 2y ) + £ 25 (a.11)

Ty

11



We calculate

- ((F9)(w) = () 0 gla)) = 5 (F)G(w)

and so for a given entry (j, k) we have

D PG, = A S Fyulu) Ga 1)
7 )

=3 [ ot + Fatn )
h=1 ’

=[] ros),

_ [0F(u) 0G (u)
_{ TG + () = Lk. (4.12)

Note that the second equality follows from linearity and the product rule. Since % acts

on a matrix piecewise as explained in part b), we have

0 OF (u) 0G (u)
F = F 4.1
5 [FGw] = 6w + Fa) (413)
and so identifying this with (4.11) we are done. [J
Part e)
Let f € C*°(U,Endc(V)) and let 5 be a fixed basis of V. We can define the trace and
determinant of a matrix A = [A]'g as
tr: My(C) — C det : My(C) — C (4.14)
d d
tr(A) = Za” det(A) = Z sgn(o) Haim .
i=1 oESn i=1

So, to extend these to acting on an endomorphism f(u) we simply apply the same idea as
in the definition of the derivative in (4.3) and write

trgnd : End((j(V) — C detgnd(f(u» : End(c(V) - C (415)
trgaa(f () = or ([f(]5) and detgy (/) = det ([f@)]5)

We may then show, as in earlier parts, that this choice of definition is independent of a
choice of basis. Here we recall two key properties of the trace and determinant for square
matrices A, B,C € My(C),

tr(ABC) = tr(BCA) = tr(CAB) and det(ABC) = det(A)det(B)det(C). (4.16)

Suppose we had defined trg,q using another basis 5’ # 3 of V instead, then using the
cyclicity property above and the change of basis formula again from (4.5) we have

trfq (F(w) = t([fW)]5) = tr (P [f(w)] P)
=[] PP = ([fw)])) = fy(Fw),  (417)
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hence we see the definition is independent of the choice of basis. Similarly for the deter-
minant we have

et (f(w)) = det([f()] ) = det (P~ [f()]5 P)

det ([f ()] ) det P
_ B B B\ . .p
B det P = det (U(u)]g) = detp,q(f(u)), (4.18)
and so once again this definition is independent of the choice of basis. Thus as functions

U — C we see that for some basis § such that ([f(u)]g)” = fij(u) we have

d
we trga(F(w) = D fialw). (4.19)

d
and u s detg (f(w) =Y | sgn(o) [] fio.(w)
=1

O'ESn

are both smooth functions as they are just sums and products of the components f;;(u),
which are all smooth themselves, hence the sums and products are smooth and so the
trace and determinant of an endomoprhism f(u) are well defined and smooth in v and so
we are done. [

Q5. Suspicious looking formula

In Theorem L4-5 we have proven that the map

pSO(3)°° — Autc(Py(3)) (5.1)

A 0 9]\ ~=a"[, 0 01"
plHta) = exp <O‘ [t28t3 _t?’atJ) - nzo nl [t28t3 t‘”’atg]

is well defined and consistent with previous definitions of p(R”) as operators on Pp(3).
Note that t1,ta,t3 refer to the standard x,y, z coordinates being rotated (with positive
orientation) such that 7 is the x-axis. Here we will attempt to make sense of the suspicious
looking formula that arises from this,

R 0 0

as an operator on Py (3). Before we do, we may calculate provide a new set of coordinates
for t1,t2,t3 to make the differential operator in (5.1) more clear. To this end, define new
(cylindrical) coordinates (h,r,6) such that

t1 =h, to=rcosf, t3=rsinfd for heR, re€[0,00), and 6 € [0,27). (5.3)

Note that this gives rise to inverse coordinates of

t
h=ty, r=\/t3+13, 9:arctan<t3>, (5.4)
2

where appropriate care should be taken for domain of the polar coordinate, but for the
purposes of this we will just take arctan which will give the essence of the answer here.
We then have for f = f(h(t1,t2,t3),7(t1, b2, t3), 0(t1, 2, t3))

oF _oron ofor 010t 0f  tn 0f 0 sin0df
Oty - Oh Oty or Oty 00 Oty B \/maT t% —l—t% 00 or r 089’
(5.5)

13



and then

or _oron ofor orow _t of  tn 0f o7 csoof
Ots - Oh Ots or Ots 00 Ots N \/maT t% —l—t% 00 or r 00
(5.6)

Thus as an operator we have

0 0 0 0 0 0 0

t28t3 _t382 7"005981n9§+cos 0%—r51n00059§+sm 9% ETR (5.7)
How convenient! Now recall that an arbitrary P(t1,t2,t3) € Pr(3) has the form
Pty ta,ts) = Y cti = Y cpt] M5
18|=k B1+B2+B3=k
= Z cghPrrP2tPs cosP2 g sins = P(h,r,0), (5.8)
B1+B2+B3=k

where cg € C. Importantly, this is a finite sum, since we know that dimc(Py(3)) = (kf)
for any fixed k. This tells us that any P(h,r,0) is an analytic function in 6 since it is just
a polynomial in smooth trigonmetric functions, hence we may write it as a Taylor series
about # = 0, namely

P(h,r,0) Z Qum(r, h)0 (5.9)
where @, (7, h) are some analytic functions. Thus we see that
A > a” 8" > m
PRNP) =D —rom > Qm(r h)o™. (5.10)
n=0 m=0

Before expanding this out, we first perform the simple calculation

o _ml_gm-n_ it <
gm = ¢ (m—n)! - 5.11
oon 0 if n>m ( )

where we note that (mmfn) = n'( ) So for some fixed m value we have

) a™ o" L an
a2 rgm m | m=n — (0 + o)™
%00 (™) = E o 79"9 = EO oy n! <n>9 0+ ) (5.12)

n=0 n=

due to the presence of the binomial formula. Hence we may write

P(RY(P) = Qulr,h)e30™ = 3 Quu(r,h)( +a)™ = P(h,r,.6 +a).  (5.13)

m=0

Now we may set & = 2w and observe our definition in (5.3) which shows that
P(r,h,0 + 2mw) = P(r,h,0) (5.14)

since we just have simple sin @ and cos @ terms, and so applying this to (5.13) we finally
see that

p(RY )(P) = P(h,r,0 + 27) = P(h,r,0) (5.15)

and so as an operator on Py we have p(R} ) = 1. O
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Q6. FE pur st muove

Recall the set of harmonic polynomials on the sphere defined as
Hi(S?) = {P|g2 € Cts(S*,C) | P € Pr(3) and AgpsP =0}. (6.1)
In exercise L4-7 we saw that the map
o :SO(3)° — Aute(Hi(S?)) (6.2)

RM) = p(R?
o(RD) = p(RD)|,
is well defined, that is, if P € H(S?) then [tg% - tg%](P) € Hp(S?) also. Thus we
may hope to be able to write down an expression for O‘(RZ) in terms of general spherical
coordinates.

We begin by calculating o(R%), o(R%) and o(RZ). In all cases we will make use of 9, 9y
and 9, so we will calculate these generically first. Using the same spherical parameterisa-
tion as in (3.4) but this time without  dependence since o(R") only acts on polynomials
on S?, hence r = 1, we may write

z? + y? Yy 2., .2 2
6 = arctan ~——— | ¢ =arctan= for z°+y“+2° =1, so 6 €[0,7] and ¢ € [0,27).
z x
(6.3)
Thus by the chain rule we have
9 _000_ 0% __ = 2 0y 0
O 000x 0 0z o\ /rZ 122’ +y?+2200 a2+ y? 0y
0 siny 9
= cos 6 cos w% TR (6.4)
and then we have
9 _000 00y 2 0. =z 9
dy 000y 0Oy a2t yrat+yP+2200 22 +y? 0y
. 0 cosy O
= cos@smw% + 506 00 (6.5)
and then finally we have
21 .2 2
0 _0w oo VEIR 200 o
0z 000z O Oz 22 22+ y? 42200 00

In the first case where we have t; = z, t2 = y and t3 = z for o(R%) our differential operator
becomes

0 g .5, . 0 2. 0 cosbcosy O
Vg, Z@y = —sin 081n¢89 cos HSlnwae im0 90 (6.7)
and so in simplifying this we have
oy ., 0 cosfcosty O
o(R}) = exp (a [— sin 1/1% T emd aw}) . (6.8)
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For the other cases we will appeal to the change of coordinates formula for a rotation
about n from lectures, namely

tl . x
ty | =T"z=[Ry_oR> sy |- (6.9)
t3 z

So, in the o(R%) case we desire a transformation such that z +— y but z is preserved.
Using the diagram in L4-11.2, this corresponds to a transformation ¢’ = 7 and ¢’ = 7,
hence giving

0 10
T" = Rz_g =|[-1 0 0|, so (ti,t2,t3)=(y,—z,2). (6.10)
0 01
Thus we have
p, 9,90 __,0_ 06 _,0_ .9
*0ts oty 0z O(—w) oz 0z
- 0 siny 0 . .0
= cosf <cos€cosw(%’ ~ S0 W) — sin 6 cos ¢ <— Sme(%)
:0081/12 _ cosfsing O (6.11)

00 sinff Oy’

Finally we can look at o(RZ) mapping x — z, so ¢/ = 0 and ' = 0 which gives

) 0 01
" = R% = 0 1 0f, so (tl,tg,t3) = (2797 —$), (612)
\l-1 00
which gives
T R R R
20t Cots Yo(—x) y oy Yo
. . 0 cosy O . . 0 siny 0
= sin # cos ¢ <cos€sm¢80 + Sno 31/’) sin @ sin vy (cos&cos w% 0 W)
0
=90 (6.13)

It is interesting to note that the formula for o(R%) appears to be the same as that for
Ry, after translating ¢ +— 1 — 7, which would be consistent with our rotation matrices in
(6.9). However, using such a relation appears to break down in the formula for o(RZ). If
one carries out the calculations, it can be seen that

x cos(y) + ') sin 6
Ry |y | =|sin(¢+4)sind |,
z cos
x sin 0’ sin 6 cos ¢ — cos 6’ cos 0 —cos(0 + 0") cos
but Ry «|y|= sin 0 sin # | sin(6 +6')siny
\z cos ¢ sinf cos 1) + sin @’ cos 0 sin(6 + 0') cos v
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All of this is to say, our hopes of being able to define spherical coordinates on cartesian
coordinates first and then naturally build in the 7 rotation axis into that generic formula
is fatally flawed by the incompatibility of the above calculation, despite working out in
the R, case. Sad!

Instead, suppose we have rotated our z-axis to be n, so we are dealing with (t1,t2,t3)
coordinates. Then we may simply define new spherical coordinates

t1 =sinfcosy, to=sinfsiny, t3=cosh where 6¢€[0,x], 1 €0,2r). (6.14)

In this case, one will just get the exact same formula as in (6.8). But this feels like cheat-
ing, no? It already presupposes that we are viewing the sphere from the perspective of
our new coordinates (¢, to, t3).

Instead, suppose we want a formula that uses the standard zyz parametersation of the
sphere but builds in the ¢" and ¢’ from #. Then we may use our formula in (6.9) to write

t1 = sin®z 4 sin 0’y + cos 'z
to = —sint'z + cos 'y (6.15)

t3 = —cos @'z — cos ' siny)'y +sin ' z.

Using the invertibility and orthogonality of the rotation matrices then gives

8 s / /8 . ! _: /a /8

ot = sin 0 cos o + sin 6’ sin ¢ By + cos 5,

0 ., 0 , 0

— = = = 1
o4, sin ¢ o + cos By (6.16)
9 _ / /8 /. /6 Y

at; cos 6’ cos o cos 0’ sin 3y + sin @ 9

Because I have already typed out enough lengthy chain rule questions in this assignment
I am simply going to state the next equation without showing all of the simplification
behind the scenes, left as an exercise to verify its legitimacy:

t2£3 _t388t2 = cos &/ [xaay - 88;10] + sin @' cos )’ [yﬁaz _ Zaay} 1 sin @ sin )’ ['Z;E _xaﬁz]

= [sin ' sinv’ cos 1 — sin @' cos v’ sin w] 9

00
+eostr — sin &’ cos 1)’ cos 6 cos 1 _sin 0’ sin 1)’ cos 6 sin 1) i
sin 6 sin 0 oY
= L(ead)aa@?aw? elaw/)' (617)

We note that it looks like there is the potential application of trigonometric addition
formulas, but as far as the eye can see they are only in our imagination. But! In using
the (¢/,0") values for each of o(R%), o(R%) and o(RZ) as above, this formula perfectly
marries up with our previous calculations which can be checked easily. Thus we finally
have as an operator on Hy(S?)

o(RL) = exp (aL(0,1), 09,0y 5 0',1))) . (6.18)

We note that we never want to see the chain rule ever again, nor write a partial derivative
on BTEX ever again. So. Much. Pain. [
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