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Lecture 2

Q2. Unitary operator is injective but not necessarily surjective

Let H be a separable Hilbert space. A linear transformation f : H — H is unitary if
(f(), f()) = (¢, ¢) for all ¥, ¢ € H with the inner product given on H. We will demon-
strate that a unitary transformation is injective but not necessarily surjective.

Let f : H — H be a unitary linear transformation and suppose f(v)) = f(¢) for some
¥, ¢ € H. Since f(¢p) — f(¢) =0, we have

0= ()= f(9), f(¥) = (@) = {(f(¥ =), f(b =) = (¥ =, = ¢), (2.1)

where the second equality is due to the linearity of f and the third is by its unitarity
(unsure if this is a word but we’ll roll with it). So by the definiteness of an inner product
space we have that 1y — ¢ = 0, hence f is indeed injective.

To show that a unitary operator f is not necessarily surjective, suppose we set H = (2,
the space of square summable infinite sequences with complex entries (so H is infinite
dimensional). Define the following “right shift” transformation

fil?— 02
(r1,m2,23,...) =2 2 = (0,21, 22,23,...). (2.2)

It is trivial that f is linear using standard notions of addition and scalar multiplication
on (2. Taking the standard inner product on ¢? we see that

(f), f) =) alyl = ahyy + Y Ty = > _ Tqys = (x,y) , (2.3)
=0 =1

i=1

so f is a unitary function. We note that it is trivial that f is well defined since it will not
change the square summability of a vector in H. However, f is not surjective: suppose we
have y € £? such that y; = 1 and y; = 0 for all i > 1. If f was surjective then we would
have some = € ¢? such that

f(z)=(0,21,29,...) = (1,0,0,...) =1y, (2.4)

but this is clearly a contradiction as the vectors disagree on the first entry. Therefore a
unitary transformation is not necessarily surjective. []



Q4. U lifts nicely to U

Let H be a Hilbert space and let B = {(;}?2; be a countable orthonormal dense basis on
‘H. Define W C H as

W= {6 e H| (G, v) # 0}, (4.1)

which we note is open, and by Exercise L2-9 is also dense in ‘H. Suppose we have a function
U : W — H that is either linear and unitary or antilinear and antiunitary. We proved in
the lectures that such a function is uniformly continuous, hence due to the density of W
in H we can invoke the universal property of complete metric spaces to lift U on to all of
‘H, that is, produce the following commutative diagram

MU,
w

where U is unique and uniformly continuous and is constructed, in a well defined manner
(due to the MHS lemma), as follows. Given a vector ¢ € H, and choosing a Cauchy
sequence {@/J(”)}%O:O C W such that W 3 (™ — 1) € H, we naturally define

U™t () := lim U(y™). (4.3)
n—oo
To show that U®! is either linear and unitary or antilinear and antiunitary we divide into
the two cases of U.

First suppose that U is linear and unitary. Suppose we have sequences w(") — Y,
»™ — ¢ where each (™ ¢ € W and ¢, € H. Given some \, pu € C we may de-
fine (A + o) (n) .= \p(m) 4 ,u(b(”). However, it is not guaranteed that this is in W, so we
have some work to do.

We need to justify the fact that we can always find such sequences ¥ and ¢ for
which their linear combination is always in W. Given we have already found such se-
quences that converge to ¥ and ¢ € H respectively, we just need to alter our sequence
in the case that M) + pe™ ¢ W for some subset of indices M C N (with equality a
genuine possibility). We may alter this subsequence defined by M by defining for each n

. EXTONE
P = {e (0 if neM (4.4)

Q) otherwise

We see that we still have ﬂ(") — ¢ by standard limit laws. Further, given that (™ and
gf)(”) € W must be nonzero, for those problematic n € M we have

€ = XM 4 ™ = Ap™ 4 g™ + )\(e% — 1)y
s0 (61,6) = (G, Alen = D)) £0.

Therefore we may instead define our Cauchy sequence converging to 1 as our new @ZAJ(").
So without loss of generality we may assume that A\ + pg™ e W for all n.



With that technicality out of the way, basic operations of vectors and limit laws give
us Ao + )™ — A\ + prp. Thus we have

U™ (W + pg) = lim U((W+ pg)™) = lim U™ + uo™)
= Tim (AU@™) + uU(6™))
=X lim U@™) +p lim U (™)
= AU () + pU™(9), (4.5)

and so U is linear. For unitarity, we may use the continuity of the inner product in each
argument to see that

(U (4), U (¢)) = ( lim U@™), lim U(¢!™))
= lim Tim (U (™), U(6"™))
:nlglgon}i_r)noow(n)’ﬁg(m))
= <nh_>rgo¢(n),ny_r>noo <Z5(m)>
=(¥,9), (4.6)

and so U®* is unitary.

In the case that U is antilinear and antiunitary, we see that we need only very minor
modifications. The third equality of (4.5) now becomes

lim U™ 4 o) = Tim (XU (@) +7U(6"))

and so following this through we get U™ (A +pug) = AU () +aU(¢) for antilinearity.
Similarly, the third equality of (4.6) becomes

lim lim (U(¢™),U(¢"™)) = lim Tim (g, p(m))

n—0o0 m—0o0 n—o0 m—oo

and so following through, noting that complex conjugation is also continuous, we have
(U (1)), U™ (¢)) = (1, ¢), hence antiunitarity.

To show that U®* is bijective, we first use our data from Ex L2-2 to know that U is
automatically injective. Suppose U®*(¢)) = U®**(¢) for 1, ¢ € H as limits as before. Then

0=U%—¢) = lim U™ ~¢™) so  lim (™ —¢”) =0 (4.7)

n—o0

by the continuity of U. Hence taking the limit we have 1) = ¢, hence U®*" is injective.

For surjectivity, we first make precise how U acts on elements of our orthonormal dense
basis B = {(;}72; (which due to linearity thus defines how it acts on any element of #).
From lectures, it was shown that under the appropriate hypotheses of Wigner’s theorem,
we must have U(() = nx ¢}, for some n, € U(1) = {n € C: |n| = 1} and another perfectly
good orthonormal dense basis B’ = {(;.}72,. We claim that By = {U((x)} is also an
orthonormal dense basis. To see that it is orthonormal, note that

(U(Ck),U(Q)) = (G mCl) = Memi(Chr &) = |mi|* Oy = Oy - (4.8)



Then, we are practically given density on a silver platter. Using MHS Theorem L21-10,
suppose we have ¢ = > 7, (. € H for some f; € C such that (¢, U((;)) = 0 for all
k € N. Then

0= (4, U(G)) = <Z Bkc,;,nk<;> =S B¢, ¢h) = Bumdia = Bome - (4.9)
=1 =1

We can safely assume that all 7, # 0, hence we must have 8, = 0 for all k£ € N and so
¢ = 0. Thus by the theorem we conclude that {U((x)}72, is a dense basis for H.

Given some ¢ € H with (™ — ¢, for each (™ we can hence write (assuming U is
linear, with the antilinear case being an obvious modification)

@ =5""ue)y =0 [ S8 | for some B € C, (4.10)
k=1 k=1

so set ¢ = Z ,B,E”k,g”) .
k=1

Then since B is also a dense basis, we know that lim,_,.. ¢ = ¢ € H exists. Therefore
we may take ¢ as our element of the domain to show that

U™(p) = lim U(¢™) = lim ™ = (4.11)

n—oo n—oQ

and so U™ is surjective, hence bijective and we are done. [J



