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Lecture 2

Q2. Unitary operator is injective but not necessarily surjective

Let H be a separable Hilbert space. A linear transformation f : H → H is unitary if
〈f(ψ), f(φ)〉 = 〈ψ, φ〉 for all ψ, φ ∈ H with the inner product given on H. We will demon-
strate that a unitary transformation is injective but not necessarily surjective.

Let f : H → H be a unitary linear transformation and suppose f(ψ) = f(φ) for some
ψ, φ ∈ H. Since f(ψ)− f(φ) = 0, we have

0 = 〈f(ψ)− f(φ), f(ψ)− f(φ)〉 = 〈f(ψ − φ), f(ψ − φ)〉 = 〈ψ − φ, ψ − φ〉 , (2.1)

where the second equality is due to the linearity of f and the third is by its unitarity
(unsure if this is a word but we’ll roll with it). So by the definiteness of an inner product
space we have that ψ − φ = 0, hence f is indeed injective.

To show that a unitary operator f is not necessarily surjective, suppose we set H = `2,
the space of square summable infinite sequences with complex entries (so H is infinite
dimensional). Define the following “right shift” transformation

f : `2 → `2

(x1, x2, x3, . . . ) = x 7→ x′ = (0, x1, x2, x3, . . . ) . (2.2)

It is trivial that f is linear using standard notions of addition and scalar multiplication
on `2. Taking the standard inner product on `2 we see that

〈f(x), f(y)〉 =
∞∑
i=0

x′iy
′
i = x′0y

′
0 +

∞∑
i=1

xiyi =
∞∑
i=1

xiyi = 〈x, y〉 , (2.3)

so f is a unitary function. We note that it is trivial that f is well defined since it will not
change the square summability of a vector in H. However, f is not surjective: suppose we
have y ∈ `2 such that y1 = 1 and yi = 0 for all i > 1. If f was surjective then we would
have some x ∈ `2 such that

f(x) = (0, x1, x2, . . . ) = (1, 0, 0, . . . ) = y , (2.4)

but this is clearly a contradiction as the vectors disagree on the first entry. Therefore a
unitary transformation is not necessarily surjective.
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Q4. U lifts nicely to Uext

Let H be a Hilbert space and let B = {ζk}∞k=1 be a countable orthonormal dense basis on
H. Define W ⊂ H as

W := {ψ ∈ H | 〈ζ1, ψ〉 6= 0} , (4.1)

which we note is open, and by Exercise L2-9 is also dense inH. Suppose we have a function
U : W → H that is either linear and unitary or antilinear and antiunitary. We proved in
the lectures that such a function is uniformly continuous, hence due to the density of W
in H we can invoke the universal property of complete metric spaces to lift U on to all of
H, that is, produce the following commutative diagram

H H

W

Uext

ι
U

, (4.2)

where U ext is unique and uniformly continuous and is constructed, in a well defined manner
(due to the MHS lemma), as follows. Given a vector ψ ∈ H, and choosing a Cauchy
sequence {ψ(n)}∞n=0 ⊆W such that W 3 ψ(n) → ψ ∈ H, we naturally define

U ext(ψ) := lim
n→∞

U(ψ(n)) . (4.3)

To show that U ext is either linear and unitary or antilinear and antiunitary we divide into
the two cases of U .

First suppose that U is linear and unitary. Suppose we have sequences ψ(n) → ψ,
φ(n) → φ where each ψ(n), φ(n) ∈ W and ψ, φ ∈ H. Given some λ, µ ∈ C we may de-
fine (λψ+ µφ)(n) := λψ(n) + µφ(n). However, it is not guaranteed that this is in W , so we
have some work to do.

We need to justify the fact that we can always find such sequences ψ(n) and φ(n) for
which their linear combination is always in W . Given we have already found such se-
quences that converge to ψ and φ ∈ H respectively, we just need to alter our sequence
in the case that λψ(n) + µφ(n) /∈ W for some subset of indices M ⊆ N (with equality a
genuine possibility). We may alter this subsequence defined by M by defining for each n

ψ̂(n) :=

{
e

1
nψ(n) if n ∈M
ψ(n) otherwise

(4.4)

We see that we still have ψ̂(n) → ψ by standard limit laws. Further, given that ψ(n) and
φ(n) ∈W must be nonzero, for those problematic n ∈M we have

ξ(n) = λψ̂(n) + µφ(n) = λψ(n) + µφ(n) + λ(e
1
n − 1)ψ(n) ,

so 〈ζ1, ξ(n)〉 = 〈ζ1, λ(e
1
n − 1)ψ(n)〉 6= 0 .

Therefore we may instead define our Cauchy sequence converging to ψ as our new ψ̂(n).
So without loss of generality we may assume that λψ(n) + µφ(n) ∈W for all n.
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With that technicality out of the way, basic operations of vectors and limit laws give
us λφ(n) + µψ(n) → λφ+ µψ. Thus we have

U ext(λψ + µφ) = lim
n→∞

U((λψ + µφ)(n)) = lim
n→∞

U(λψ(n) + µφ(n))

= lim
n→∞

(
λU(ψ(n)) + µU(φ(n))

)
= λ lim

n→∞
U(ψ(n)) + µ lim

n→∞
U(φ(n))

= λU ext(ψ) + µU ext(φ) , (4.5)

and so U ext is linear. For unitarity, we may use the continuity of the inner product in each
argument to see that

〈U ext(ψ), U ext(φ)〉 =
〈

lim
n→∞

U(ψ(n)), lim
m→∞

U(φ(m))
〉

= lim
n→∞

lim
m→∞

〈U(ψ(n)), U(φ(m))〉

= lim
n→∞

lim
m→∞

〈ψ(n), φ(m)〉

=
〈

lim
n→∞

ψ(n), lim
m→∞

φ(m)
〉

= 〈ψ, φ〉 , (4.6)

and so U ext is unitary.

In the case that U is antilinear and antiunitary, we see that we need only very minor
modifications. The third equality of (4.5) now becomes

lim
n→∞

U(λψ(n) + µφ(n)) = lim
n→∞

(
λU(ψ(n)) + µU(φ(n))

)
and so following this through we get U ext(λψ+µφ) = λU ext(ψ)+µU ext(φ) for antilinearity.
Similarly, the third equality of (4.6) becomes

lim
n→∞

lim
m→∞

〈U(ψ(n)), U(φ(m))〉 = lim
n→∞

lim
m→∞

〈ψ(n), φ(m)〉

and so following through, noting that complex conjugation is also continuous, we have
〈U ext(ψ), U ext(φ)〉 = 〈ψ, φ〉, hence antiunitarity.

To show that U ext is bijective, we first use our data from Ex L2-2 to know that U is
automatically injective. Suppose U ext(ψ) = U ext(φ) for ψ, φ ∈ H as limits as before. Then

0 = U ext(ψ − φ) = lim
n→∞

U(ψ(n) − φ(n)) so lim
n→∞

(ψ(n) − φ(n)) = 0 (4.7)

by the continuity of U . Hence taking the limit we have ψ = φ, hence U ext is injective.

For surjectivity, we first make precise how U acts on elements of our orthonormal dense
basis B = {ζk}∞k=1 (which due to linearity thus defines how it acts on any element of H).
From lectures, it was shown that under the appropriate hypotheses of Wigner’s theorem,
we must have U(ζk) = ηkζ

′
k for some ηk ∈ U(1) = {η ∈ C : |η| = 1} and another perfectly

good orthonormal dense basis B′ = {ζ ′k}∞k=1. We claim that BU = {U(ζk)} is also an
orthonormal dense basis. To see that it is orthonormal, note that

〈U(ζk), U(ζl)〉 = 〈ηkζ ′k, ηlζ ′l〉 = ηkηl〈ζ ′k, ζ ′l〉 = |ηk|2δk,l = δk,l . (4.8)
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Then, we are practically given density on a silver platter. Using MHS Theorem L21-10,
suppose we have ψ =

∑∞
k=1 βkζ

′
k ∈ H for some βk ∈ C such that 〈ψ,U(ζk)〉 = 0 for all

k ∈ N. Then

0 = 〈ψ,U(ζk)〉 =

〈 ∞∑
l=1

βkζ
′
k, ηkζ

′
k

〉
=

∞∑
l=1

βlηk〈ζ ′l , ζ ′k〉 = βlηkδk,l = βkηk . (4.9)

We can safely assume that all ηk 6= 0, hence we must have βk = 0 for all k ∈ N and so
ψ = 0. Thus by the theorem we conclude that {U(ζk)}∞k=1 is a dense basis for H.

Given some ψ ∈ H with ψ(n) → ψ, for each ψ(n) we can hence write (assuming U is
linear, with the antilinear case being an obvious modification)

ψ(n) =
∞∑
k=1

β
(n)
k U(ζ

(n)
k ) = U

 ∞∑
k=1

β
(n)
k ζ

(n)
k

 for some β
(n)
k ∈ C , (4.10)

so set φ(n) =
∞∑
k=1

β
(n)
k ζ

(n)
k .

Then since B is also a dense basis, we know that limn→∞ φ(n) = φ ∈ H exists. Therefore
we may take φ as our element of the domain to show that

U ext(φ) = lim
n→∞

U(φ(n)) = lim
n→∞

ψ(n) = ψ (4.11)

and so U ext is surjective, hence bijective and we are done.
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