Lie Algebras Assignment 1

Liam Carroll - 830916

Due Date: $22^{\text {nd }}$ March 2021

Lecture 2

Q2. Unitary operator is injective but not necessarily surjective

Let \mathcal{H} be a separable Hilbert space. A linear transformation $f: \mathcal{H} \rightarrow \mathcal{H}$ is unitary if $\langle f(\psi), f(\phi)\rangle=\langle\psi, \phi\rangle$ for all $\psi, \phi \in \mathcal{H}$ with the inner product given on \mathcal{H}. We will demonstrate that a unitary transformation is injective but not necessarily surjective.

Let $f: \mathcal{H} \rightarrow \mathcal{H}$ be a unitary linear transformation and suppose $f(\psi)=f(\phi)$ for some $\psi, \phi \in \mathcal{H}$. Since $f(\psi)-f(\phi)=0$, we have

$$
\begin{equation*}
0=\langle f(\psi)-f(\phi), f(\psi)-f(\phi)\rangle=\langle f(\psi-\phi), f(\psi-\phi)\rangle=\langle\psi-\phi, \psi-\phi\rangle, \tag{2.1}
\end{equation*}
$$

where the second equality is due to the linearity of f and the third is by its unitarity (unsure if this is a word but we'll roll with it). So by the definiteness of an inner product space we have that $\psi-\phi=0$, hence f is indeed injective.

To show that a unitary operator f is not necessarily surjective, suppose we set $\mathcal{H}=\ell^{2}$, the space of square summable infinite sequences with complex entries (so \mathcal{H} is infinite dimensional). Define the following "right shift" transformation

$$
\begin{align*}
f: \ell^{2} & \rightarrow \ell^{2} \\
\left(x_{1}, x_{2}, x_{3}, \ldots\right)=x & \mapsto x^{\prime}=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) . \tag{2.2}
\end{align*}
$$

It is trivial that f is linear using standard notions of addition and scalar multiplication on ℓ^{2}. Taking the standard inner product on ℓ^{2} we see that

$$
\begin{equation*}
\langle f(x), f(y)\rangle=\sum_{i=0}^{\infty} \overline{x_{i}^{\prime}} y_{i}^{\prime}=\overline{x_{0}^{\prime}} y_{0}^{\prime}+\sum_{i=1}^{\infty} \overline{x_{i}} y_{i}=\sum_{i=1}^{\infty} \overline{x_{i}} y_{i}=\langle x, y\rangle, \tag{2.3}
\end{equation*}
$$

so f is a unitary function. We note that it is trivial that f is well defined since it will not change the square summability of a vector in \mathcal{H}. However, f is not surjective: suppose we have $y \in \ell^{2}$ such that $y_{1}=1$ and $y_{i}=0$ for all $i>1$. If f was surjective then we would have some $x \in \ell^{2}$ such that

$$
\begin{equation*}
f(x)=\left(0, x_{1}, x_{2}, \ldots\right)=(1,0,0, \ldots)=y \tag{2.4}
\end{equation*}
$$

but this is clearly a contradiction as the vectors disagree on the first entry. Therefore a unitary transformation is not necessarily surjective.

Q4. U lifts nicely to $U^{\text {ext }}$

Let \mathcal{H} be a Hilbert space and let $\mathcal{B}=\left\{\zeta_{k}\right\}_{k=1}^{\infty}$ be a countable orthonormal dense basis on \mathcal{H}. Define $W \subset \mathcal{H}$ as

$$
\begin{equation*}
W:=\left\{\psi \in \mathcal{H} \mid\left\langle\zeta_{1}, \psi\right\rangle \neq 0\right\} \tag{4.1}
\end{equation*}
$$

which we note is open, and by Exercise L2-9 is also dense in \mathcal{H}. Suppose we have a function $U: W \rightarrow \mathcal{H}$ that is either linear and unitary or antilinear and antiunitary. We proved in the lectures that such a function is uniformly continuous, hence due to the density of W in \mathcal{H} we can invoke the universal property of complete metric spaces to lift U on to all of \mathcal{H}, that is, produce the following commutative diagram

where $U^{\text {ext }}$ is unique and uniformly continuous and is constructed, in a well defined manner (due to the MHS lemma), as follows. Given a vector $\psi \in \mathcal{H}$, and choosing a Cauchy sequence $\left\{\psi^{(n)}\right\}_{n=0}^{\infty} \subseteq W$ such that $W \ni \psi^{(n)} \rightarrow \psi \in \mathcal{H}$, we naturally define

$$
\begin{equation*}
U^{\mathrm{ext}}(\psi):=\lim _{n \rightarrow \infty} U\left(\psi^{(n)}\right) \tag{4.3}
\end{equation*}
$$

To show that $U^{\text {ext }}$ is either linear and unitary or antilinear and antiunitary we divide into the two cases of U.

First suppose that U is linear and unitary. Suppose we have sequences $\psi^{(n)} \rightarrow \psi$, $\phi^{(n)} \rightarrow \phi$ where each $\psi^{(n)}, \phi^{(n)} \in W$ and $\psi, \phi \in \mathcal{H}$. Given some $\lambda, \mu \in \mathbb{C}$ we may define $(\lambda \psi+\mu \phi)^{(n)}:=\lambda \psi^{(n)}+\mu \phi^{(n)}$. However, it is not guaranteed that this is in W, so we have some work to do.

We need to justify the fact that we can always find such sequences $\psi^{(n)}$ and $\phi^{(n)}$ for which their linear combination is always in W. Given we have already found such sequences that converge to ψ and $\phi \in \mathcal{H}$ respectively, we just need to alter our sequence in the case that $\lambda \psi^{(n)}+\mu \phi^{(n)} \notin W$ for some subset of indices $M \subseteq \mathbb{N}$ (with equality a genuine possibility). We may alter this subsequence defined by M by defining for each n

$$
\hat{\psi}^{(n)}:= \begin{cases}e^{\frac{1}{n}} \psi^{(n)} & \text { if } n \in M \tag{4.4}\\ \psi^{(n)} & \text { otherwise }\end{cases}
$$

We see that we still have $\hat{\psi}^{(n)} \rightarrow \psi$ by standard limit laws. Further, given that $\psi^{(n)}$ and $\phi^{(n)} \in W$ must be nonzero, for those problematic $n \in M$ we have

$$
\begin{gathered}
\xi^{(n)}=\lambda \hat{\psi}^{(n)}+\mu \phi^{(n)}=\lambda \psi^{(n)}+\mu \phi^{(n)}+\lambda\left(e^{\frac{1}{n}}-1\right) \psi^{(n)}, \\
\text { so }\left\langle\zeta_{1}, \xi^{(n)}\right\rangle=\left\langle\zeta_{1}, \lambda\left(e^{\frac{1}{n}}-1\right) \psi^{(n)}\right\rangle \neq 0 .
\end{gathered}
$$

Therefore we may instead define our Cauchy sequence converging to ψ as our new $\hat{\psi}^{(n)}$. So without loss of generality we may assume that $\lambda \psi^{(n)}+\mu \phi^{(n)} \in W$ for all n.

With that technicality out of the way, basic operations of vectors and limit laws give us $\lambda \phi^{(n)}+\mu \psi^{(n)} \rightarrow \lambda \phi+\mu \psi$. Thus we have

$$
\begin{align*}
U^{\mathrm{ext}}(\lambda \psi+\mu \phi)=\lim _{n \rightarrow \infty} U\left((\lambda \psi+\mu \phi)^{(n)}\right) & =\lim _{n \rightarrow \infty} U\left(\lambda \psi^{(n)}+\mu \phi^{(n)}\right) \\
& =\lim _{n \rightarrow \infty}\left(\lambda U\left(\psi^{(n)}\right)+\mu U\left(\phi^{(n)}\right)\right) \\
& =\lambda \lim _{n \rightarrow \infty} U\left(\psi^{(n)}\right)+\mu \lim _{n \rightarrow \infty} U\left(\phi^{(n)}\right) \\
& =\lambda U^{\mathrm{ext}}(\psi)+\mu U^{\mathrm{ext}}(\phi), \tag{4.5}
\end{align*}
$$

and so $U^{\text {ext }}$ is linear. For unitarity, we may use the continuity of the inner product in each argument to see that

$$
\begin{align*}
\left\langle U^{\mathrm{ext}}(\psi), U^{\mathrm{ext}}(\phi)\right\rangle & =\left\langle\lim _{n \rightarrow \infty} U\left(\psi^{(n)}\right), \lim _{m \rightarrow \infty} U\left(\phi^{(m)}\right)\right\rangle \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty}\left\langle U\left(\psi^{(n)}\right), U\left(\phi^{(m)}\right)\right\rangle \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty}\left\langle\psi^{(n)}, \phi^{(m)}\right\rangle \\
& =\left\langle\lim _{n \rightarrow \infty} \psi^{(n)}, \lim _{m \rightarrow \infty} \phi^{(m)}\right\rangle \\
& =\langle\psi, \phi\rangle, \tag{4.6}
\end{align*}
$$

and so $U^{\text {ext }}$ is unitary.
In the case that U is antilinear and antiunitary, we see that we need only very minor modifications. The third equality of (4.5) now becomes

$$
\lim _{n \rightarrow \infty} U\left(\lambda \psi^{(n)}+\mu \phi^{(n)}\right)=\lim _{n \rightarrow \infty}\left(\bar{\lambda} U\left(\psi^{(n)}\right)+\bar{\mu} U\left(\phi^{(n)}\right)\right)
$$

and so following this through we get $U^{\text {ext }}(\lambda \psi+\mu \phi)=\bar{\lambda} U^{\text {ext }}(\psi)+\bar{\mu} U^{\text {ext }}(\phi)$ for antilinearity. Similarly, the third equality of (4.6) becomes

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty}\left\langle U\left(\psi^{(n)}\right), U\left(\phi^{(m)}\right)\right\rangle=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \overline{\left\langle\psi^{(n)}, \phi^{(m)}\right\rangle}
$$

and so following through, noting that complex conjugation is also continuous, we have $\left\langle U^{\text {ext }}(\psi), U^{\text {ext }}(\phi)\right\rangle=\overline{\langle\psi, \phi\rangle}$, hence antiunitarity.

To show that $U^{\text {ext }}$ is bijective, we first use our data from Ex L2-2 to know that U is automatically injective. Suppose $U^{\text {ext }}(\psi)=U^{\text {ext }}(\phi)$ for $\psi, \phi \in \mathcal{H}$ as limits as before. Then

$$
\begin{equation*}
0=U^{\mathrm{ext}}(\psi-\phi)=\lim _{n \rightarrow \infty} U\left(\psi^{(n)}-\phi^{(n)}\right) \quad \text { so } \quad \lim _{n \rightarrow \infty}\left(\psi^{(n)}-\phi^{(n)}\right)=0 \tag{4.7}
\end{equation*}
$$

by the continuity of U. Hence taking the limit we have $\psi=\phi$, hence $U^{\text {ext }}$ is injective.
For surjectivity, we first make precise how U acts on elements of our orthonormal dense basis $\mathcal{B}=\left\{\zeta_{k}\right\}_{k=1}^{\infty}$ (which due to linearity thus defines how it acts on any element of \mathcal{H}). From lectures, it was shown that under the appropriate hypotheses of Wigner's theorem, we must have $U\left(\zeta_{k}\right)=\eta_{k} \zeta_{k}^{\prime}$ for some $\eta_{k} \in \mathcal{U}(1)=\{\eta \in \mathbb{C}:|\eta|=1\}$ and another perfectly good orthonormal dense basis $\mathcal{B}^{\prime}=\left\{\zeta_{k}^{\prime}\right\}_{k=1}^{\infty}$. We claim that $\mathcal{B}_{U}=\left\{U\left(\zeta_{k}\right)\right\}$ is also an orthonormal dense basis. To see that it is orthonormal, note that

$$
\begin{equation*}
\left\langle U\left(\zeta_{k}\right), U\left(\zeta_{l}\right)\right\rangle=\left\langle\eta_{k} \zeta_{k}^{\prime}, \eta_{l} \zeta_{l}^{\prime}\right\rangle=\overline{\eta_{k}} \eta_{l}\left\langle\zeta_{k}^{\prime}, \zeta_{l}^{\prime}\right\rangle=\left|\eta_{k}\right|^{2} \delta_{k, l}=\delta_{k, l} . \tag{4.8}
\end{equation*}
$$

Then, we are practically given density on a silver platter. Using MHS Theorem L21-10, suppose we have $\psi=\sum_{k=1}^{\infty} \beta_{k} \zeta_{k}^{\prime} \in \mathcal{H}$ for some $\beta_{k} \in \mathbb{C}$ such that $\left\langle\psi, U\left(\zeta_{k}\right)\right\rangle=0$ for all $k \in \mathbb{N}$. Then

$$
\begin{equation*}
0=\left\langle\psi, U\left(\zeta_{k}\right)\right\rangle=\left\langle\sum_{l=1}^{\infty} \beta_{k} \zeta_{k}^{\prime}, \eta_{k} \zeta_{k}^{\prime}\right\rangle=\sum_{l=1}^{\infty} \overline{\beta_{l}} \eta_{k}\left\langle\zeta_{l}^{\prime}, \zeta_{k}^{\prime}\right\rangle=\overline{\beta_{l}} \eta_{k} \delta_{k, l}=\overline{\beta_{k}} \eta_{k} \tag{4.9}
\end{equation*}
$$

We can safely assume that all $\eta_{k} \neq 0$, hence we must have $\overline{\beta_{k}}=0$ for all $k \in \mathbb{N}$ and so $\psi=0$. Thus by the theorem we conclude that $\left\{U\left(\zeta_{k}\right)\right\}_{k=1}^{\infty}$ is a dense basis for \mathcal{H}.

Given some $\psi \in \mathcal{H}$ with $\psi^{(n)} \rightarrow \psi$, for each $\psi^{(n)}$ we can hence write (assuming U is linear, with the antilinear case being an obvious modification)

$$
\begin{gather*}
\psi^{(n)}=\sum_{k=1}^{\infty} \beta_{k}^{(n)} U\left(\zeta_{k}^{(n)}\right)=U\left(\sum_{k=1}^{\infty} \beta_{k}^{(n)} \zeta_{k}^{(n)}\right) \quad \text { for some } \beta_{k}^{(n)} \in \mathbb{C} \tag{4.10}\\
\text { so set } \phi^{(n)}=\sum_{k=1}^{\infty} \beta_{k}^{(n)} \zeta_{k}^{(n)}
\end{gather*}
$$

Then since \mathcal{B} is also a dense basis, we know that $\lim _{n \rightarrow \infty} \phi^{(n)}=\phi \in \mathcal{H}$ exists. Therefore we may take ϕ as our element of the domain to show that

$$
\begin{equation*}
U^{\mathrm{ext}}(\phi)=\lim _{n \rightarrow \infty} U\left(\phi^{(n)}\right)=\lim _{n \rightarrow \infty} \psi^{(n)}=\psi \tag{4.11}
\end{equation*}
$$

and so $U^{\text {ext }}$ is surjective, hence bijective and we are done.

