Lie Algebras Assignment 1

Liam Carroll - 830916

Due Date: 22nd March 2021

Lecture 2

Q2. Unitary operator is injective but not necessarily surjective

Let \mathcal{H} be a separable Hilbert space. A linear transformation $f : \mathcal{H} \to \mathcal{H}$ is unitary if $\langle f(\psi), f(\phi) \rangle = \langle \psi, \phi \rangle$ for all $\psi, \phi \in \mathcal{H}$ with the inner product given on \mathcal{H} . We will demonstrate that a unitary transformation is injective but not necessarily surjective.

Let $f : \mathcal{H} \to \mathcal{H}$ be a unitary linear transformation and suppose $f(\psi) = f(\phi)$ for some $\psi, \phi \in \mathcal{H}$. Since $f(\psi) - f(\phi) = 0$, we have

$$0 = \langle f(\psi) - f(\phi), f(\psi) - f(\phi) \rangle = \langle f(\psi - \phi), f(\psi - \phi) \rangle = \langle \psi - \phi, \psi - \phi \rangle, \qquad (2.1)$$

where the second equality is due to the linearity of f and the third is by its unitarity (unsure if this is a word but we'll roll with it). So by the definiteness of an inner product space we have that $\psi - \phi = 0$, hence f is indeed injective.

To show that a unitary operator f is not necessarily surjective, suppose we set $\mathcal{H} = \ell^2$, the space of square summable infinite sequences with complex entries (so \mathcal{H} is infinite dimensional). Define the following "right shift" transformation

$$f: \ell^2 \to \ell^2$$

(x₁, x₂, x₃,...) = x \mapsto x' = (0, x₁, x₂, x₃,...). (2.2)

It is trivial that f is linear using standard notions of addition and scalar multiplication on ℓ^2 . Taking the standard inner product on ℓ^2 we see that

$$\langle f(x), f(y) \rangle = \sum_{i=0}^{\infty} \overline{x'_i} y'_i = \overline{x'_0} y'_0 + \sum_{i=1}^{\infty} \overline{x_i} y_i = \sum_{i=1}^{\infty} \overline{x_i} y_i = \langle x, y \rangle, \qquad (2.3)$$

so f is a unitary function. We note that it is trivial that f is well defined since it will not change the square summability of a vector in \mathcal{H} . However, f is not surjective: suppose we have $y \in \ell^2$ such that $y_1 = 1$ and $y_i = 0$ for all i > 1. If f was surjective then we would have some $x \in \ell^2$ such that

$$f(x) = (0, x_1, x_2, \dots) = (1, 0, 0, \dots) = y, \qquad (2.4)$$

but this is clearly a contradiction as the vectors disagree on the first entry. Therefore a unitary transformation is not necessarily surjective. \Box

Q4. U lifts nicely to U^{ext}

Let \mathcal{H} be a Hilbert space and let $\mathcal{B} = \{\zeta_k\}_{k=1}^{\infty}$ be a countable orthonormal dense basis on \mathcal{H} . Define $W \subset \mathcal{H}$ as

$$W := \{ \psi \in \mathcal{H} \mid \langle \zeta_1, \psi \rangle \neq 0 \}, \tag{4.1}$$

which we note is open, and by Exercise L2-9 is also dense in \mathcal{H} . Suppose we have a function $U: W \to \mathcal{H}$ that is either linear and unitary or antilinear and antiunitary. We proved in the lectures that such a function is uniformly continuous, hence due to the density of W in \mathcal{H} we can invoke the universal property of complete metric spaces to lift U on to all of \mathcal{H} , that is, produce the following commutative diagram

$$\begin{array}{c} \mathcal{H} \xrightarrow{U \text{ext}} \mathcal{H} \\ \iota & & \downarrow \\ U \\ W \end{array} , \qquad (4.2)$$

where U^{ext} is unique and uniformly continuous and is constructed, in a well defined manner (due to the MHS lemma), as follows. Given a vector $\psi \in \mathcal{H}$, and choosing a Cauchy sequence $\{\psi^{(n)}\}_{n=0}^{\infty} \subseteq W$ such that $W \ni \psi^{(n)} \to \psi \in \mathcal{H}$, we naturally define

$$U^{\text{ext}}(\psi) := \lim_{n \to \infty} U(\psi^{(n)}) \,. \tag{4.3}$$

To show that U^{ext} is either linear and unitary or antilinear and antiunitary we divide into the two cases of U.

First suppose that U is linear and unitary. Suppose we have sequences $\psi^{(n)} \to \psi$, $\phi^{(n)} \to \phi$ where each $\psi^{(n)}, \phi^{(n)} \in W$ and $\psi, \phi \in \mathcal{H}$. Given some $\lambda, \mu \in \mathbb{C}$ we may define $(\lambda \psi + \mu \phi)^{(n)} := \lambda \psi^{(n)} + \mu \phi^{(n)}$. However, it is not guaranteed that this is in W, so we have some work to do.

We need to justify the fact that we can always find such sequences $\psi^{(n)}$ and $\phi^{(n)}$ for which their linear combination is always in W. Given we have already found such sequences that converge to ψ and $\phi \in \mathcal{H}$ respectively, we just need to alter our sequence in the case that $\lambda \psi^{(n)} + \mu \phi^{(n)} \notin W$ for some subset of indices $M \subseteq \mathbb{N}$ (with equality a genuine possibility). We may alter this subsequence defined by M by defining for each n

$$\hat{\psi}^{(n)} := \begin{cases} e^{\frac{1}{n}} \psi^{(n)} & \text{if } n \in M \\ \psi^{(n)} & \text{otherwise} \end{cases}$$
(4.4)

We see that we still have $\hat{\psi}^{(n)} \to \psi$ by standard limit laws. Further, given that $\psi^{(n)}$ and $\phi^{(n)} \in W$ must be nonzero, for those problematic $n \in M$ we have

$$\xi^{(n)} = \lambda \hat{\psi}^{(n)} + \mu \phi^{(n)} = \lambda \psi^{(n)} + \mu \phi^{(n)} + \lambda (e^{\frac{1}{n}} - 1) \psi^{(n)},$$

so $\langle \zeta_1, \xi^{(n)} \rangle = \langle \zeta_1, \lambda (e^{\frac{1}{n}} - 1) \psi^{(n)} \rangle \neq 0.$

Therefore we may instead define our Cauchy sequence converging to ψ as our new $\hat{\psi}^{(n)}$. So without loss of generality we may assume that $\lambda \psi^{(n)} + \mu \phi^{(n)} \in W$ for all n. With that technicality out of the way, basic operations of vectors and limit laws give us $\lambda \phi^{(n)} + \mu \psi^{(n)} \rightarrow \lambda \phi + \mu \psi$. Thus we have

$$U^{\text{ext}}(\lambda\psi+\mu\phi) = \lim_{n\to\infty} U((\lambda\psi+\mu\phi)^{(n)}) = \lim_{n\to\infty} U(\lambda\psi^{(n)}+\mu\phi^{(n)})$$
$$= \lim_{n\to\infty} \left(\lambda U(\psi^{(n)})+\mu U(\phi^{(n)})\right)$$
$$= \lambda \lim_{n\to\infty} U(\psi^{(n)})+\mu \lim_{n\to\infty} U(\phi^{(n)})$$
$$= \lambda U^{\text{ext}}(\psi)+\mu U^{\text{ext}}(\phi), \qquad (4.5)$$

and so U^{ext} is linear. For unitarity, we may use the continuity of the inner product in each argument to see that

$$\langle U^{\text{ext}}(\psi), U^{\text{ext}}(\phi) \rangle = \left\langle \lim_{n \to \infty} U(\psi^{(n)}), \lim_{m \to \infty} U(\phi^{(m)}) \right\rangle$$

$$= \lim_{n \to \infty} \lim_{m \to \infty} \langle U(\psi^{(n)}), U(\phi^{(m)}) \rangle$$

$$= \lim_{n \to \infty} \lim_{m \to \infty} \langle \psi^{(n)}, \phi^{(m)} \rangle$$

$$= \left\langle \lim_{n \to \infty} \psi^{(n)}, \lim_{m \to \infty} \phi^{(m)} \right\rangle$$

$$= \left\langle \psi, \phi \right\rangle,$$

$$(4.6)$$

and so U^{ext} is unitary.

In the case that U is antilinear and antiunitary, we see that we need only very minor modifications. The third equality of (4.5) now becomes

$$\lim_{n \to \infty} U(\lambda \psi^{(n)} + \mu \phi^{(n)}) = \lim_{n \to \infty} \left(\overline{\lambda} U(\psi^{(n)}) + \overline{\mu} U(\phi^{(n)}) \right)$$

and so following this through we get $U^{\text{ext}}(\lambda\psi+\mu\phi) = \overline{\lambda}U^{\text{ext}}(\psi)+\overline{\mu}U^{\text{ext}}(\phi)$ for antilinearity. Similarly, the third equality of (4.6) becomes

$$\lim_{n \to \infty} \lim_{m \to \infty} \langle U(\psi^{(n)}), U(\phi^{(m)}) \rangle = \lim_{n \to \infty} \lim_{m \to \infty} \overline{\langle \psi^{(n)}, \phi^{(m)} \rangle}$$

and so following through, noting that complex conjugation is also continuous, we have $\langle U^{\text{ext}}(\psi), U^{\text{ext}}(\phi) \rangle = \overline{\langle \psi, \phi \rangle}$, hence antiunitarity.

To show that U^{ext} is bijective, we first use our data from Ex L2-2 to know that U is automatically injective. Suppose $U^{\text{ext}}(\psi) = U^{\text{ext}}(\phi)$ for $\psi, \phi \in \mathcal{H}$ as limits as before. Then

$$0 = U^{\text{ext}}(\psi - \phi) = \lim_{n \to \infty} U(\psi^{(n)} - \phi^{(n)}) \quad \text{so} \quad \lim_{n \to \infty} (\psi^{(n)} - \phi^{(n)}) = 0 \tag{4.7}$$

by the continuity of U. Hence taking the limit we have $\psi = \phi$, hence U^{ext} is injective.

For surjectivity, we first make precise how U acts on elements of our orthonormal dense basis $\mathcal{B} = \{\zeta_k\}_{k=1}^{\infty}$ (which due to linearity thus defines how it acts on any element of \mathcal{H}). From lectures, it was shown that under the appropriate hypotheses of Wigner's theorem, we must have $U(\zeta_k) = \eta_k \zeta'_k$ for some $\eta_k \in \mathcal{U}(1) = \{\eta \in \mathbb{C} : |\eta| = 1\}$ and another perfectly good orthonormal dense basis $\mathcal{B}' = \{\zeta'_k\}_{k=1}^{\infty}$. We claim that $\mathcal{B}_U = \{U(\zeta_k)\}$ is also an orthonormal dense basis. To see that it is orthonormal, note that

$$\langle U(\zeta_k), U(\zeta_l) \rangle = \langle \eta_k \zeta'_k, \eta_l \zeta'_l \rangle = \overline{\eta_k} \eta_l \langle \zeta'_k, \zeta'_l \rangle = |\eta_k|^2 \delta_{k,l} = \delta_{k,l} .$$
(4.8)

Then, we are practically given density on a silver platter. Using MHS Theorem L21-10, suppose we have $\psi = \sum_{k=1}^{\infty} \beta_k \zeta'_k \in \mathcal{H}$ for some $\beta_k \in \mathbb{C}$ such that $\langle \psi, U(\zeta_k) \rangle = 0$ for all $k \in \mathbb{N}$. Then

$$0 = \langle \psi, U(\zeta_k) \rangle = \left\langle \sum_{l=1}^{\infty} \beta_k \zeta'_k, \eta_k \zeta'_k \right\rangle = \sum_{l=1}^{\infty} \overline{\beta_l} \eta_k \langle \zeta'_l, \zeta'_k \rangle = \overline{\beta_l} \eta_k \delta_{k,l} = \overline{\beta_k} \eta_k \,. \tag{4.9}$$

We can safely assume that all $\eta_k \neq 0$, hence we must have $\overline{\beta_k} = 0$ for all $k \in \mathbb{N}$ and so $\psi = 0$. Thus by the theorem we conclude that $\{U(\zeta_k)\}_{k=1}^{\infty}$ is a dense basis for \mathcal{H} .

Given some $\psi \in \mathcal{H}$ with $\psi^{(n)} \to \psi$, for each $\psi^{(n)}$ we can hence write (assuming U is linear, with the antilinear case being an obvious modification)

$$\psi^{(n)} = \sum_{k=1}^{\infty} \beta_k^{(n)} U(\zeta_k^{(n)}) = U\left(\sum_{k=1}^{\infty} \beta_k^{(n)} \zeta_k^{(n)}\right) \quad \text{for some } \beta_k^{(n)} \in \mathbb{C} \,, \tag{4.10}$$

so set $\phi^{(n)} = \sum_{k=1}^{\infty} \beta_k^{(n)} \zeta_k^{(n)} \,.$

Then since \mathcal{B} is also a dense basis, we know that $\lim_{n\to\infty} \phi^{(n)} = \phi \in \mathcal{H}$ exists. Therefore we may take ϕ as our element of the domain to show that

$$U^{\text{ext}}(\phi) = \lim_{n \to \infty} U(\phi^{(n)}) = \lim_{n \to \infty} \psi^{(n)} = \psi$$
(4.11)

and so U^{ext} is surjective, hence bijective and we are done. \Box