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Q1. Minkowski functional

Let C be an absorbing subset of a vector space V , that is, for all x ∈ V there is a
non-negative α such that x ∈ αC. Further, assume that if x ∈ C and 0 ≤ τ ≤ 1,
then τx ∈ C. Let ρ : V → R+ be the Minkowski functional for C defined by

ρ(x) = inf{t ≥ 0; x ∈ tC} . (1.1)

For s ≥ 0, ρ(sx) = sρ(x).

Let s ≥ 0 and x ∈ V be arbitrary. We know from basic properties of the infi-
mum that for λ ≥ 0 and any set A, λ inf(A) = inf(λA) (i.e. set M = inf(λA), then
M ≤ λx for all x ∈ A, so M/λ ≤ x for all x ∈ A, so (1/λ) inf(λA) = inf(A)). Hence
we can calculate

sρ(x) = s inf
(
{t ≥ 0; x ∈ tC}

)
= inf

(
s{t ≥ 0; x ∈ tC}

)
= inf

(
{st ≥ 0; x ∈ tC}

)
= inf

({
st ≥ 0; x ∈ (st)

s
C

})
= inf

(
{st ≥ 0; sx ∈ (st)C}

)
= inf

(
{t′ ≥ 0; sx ∈ t′C}

)
= ρ(sx) . (1.2)

{x : ρ(x) < 1} ⊂ C ⊂ {x : ρ(x) ≤ 1}

First, we quickly prove that if k < k′ are two positive reals, then kC ⊂ k′C. Let
x ∈ kC, so x = kc for some c ∈ C. Then we have

x

k′
= (k/k′)︸ ︷︷ ︸

<1

c ∈ C (1.3)

due to the scaling property hypothesised on C. Therefore, x ∈ k′C so kC ⊂ k′C.

Let x ∈ {x : ρ(x) < 1} ⊂ V . Then ρ(x) < 1, so there exists a t < 1 such that
x ∈ tC. Then choose t′ = 1 and apply the above lemma to see that x ∈ 1C = C,
showing the desired inclusion.
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Now let x ∈ C, so x ∈ 1C in particular. Then the set {t ≥ 0 : x ∈ tC} con-
tains t = 1, meaning inf{t ≥ 0 : x ∈ tC} ≤ 1, hence ρ(x) ≤ 1 showing the desired
inclusion.

If C is convex, then ρ(x+ y) ≤ ρ(x) + ρ(y)

Let C have all the properties as above, but also assume that it is convex, so if
x, y ∈ C and 0 ≤ τ ≤ 1 then τx + (1 − τ)y ∈ C. We know that since ρ(x) is an
infimum, then for all ε > 0 there is t′ such that ρ(x) ≤ t′ < ρ(x) + ε. Using this, we
can set tx = ρ(x) + ε and ty = ρ(y) + ε. Then clearly ρ(x) + ε > ρ(x). By definition,
we must have x ∈ ρ(x)C. Hence by our previous tiny lemma we have

x ∈ txC and y ∈ tyC . (1.4)

Then if we take the convex combination of the two quantities x/tx ∈ C and y/ty ∈ C,
we see

tx
tx + ty

x

tx
+

ty
tx + ty

y

ty
=

x+ y

tx + ty
∈ C , (1.5)

which means that

(x+ y) ∈ (ρ(x) + ρ(y) + 2ε)C . (1.6)

Therefore, the infimum is at worst ρ(x) + ρ(y) (the 2ε vanishes when taking this
inf), hence showing that

ρ(x+ y) = inf
(
{t ≥ 0; x+ y ∈ tC}

)
≤ ρ(x) + ρ(y) . (1.7)

If C is circled then ρ(λx) = |λ|ρ(x)

Assume C is circled - that is, if x ∈ C and λ ∈ C satisifes |λ| = 1, then λx ∈ C -
this is equivalent to saying that if λ = eiθ then eiθx ∈ C. In other words, this tells
us that eiθC = C for any θ ∈ [0, 2π).

We now analyse ρ(λx) for the above hypothesis. Let λ ∈ C be arbitrary, so we
can write λ = |λ|eiθ. Then

ρ(λx) = inf({t ≥ 0 ; λx ∈ tC})
= inf({t ≥ 0 ; |λ|eiθx ∈ tC})
= inf({t ≥ 0 ; (|λ|/t)x ∈ e−iθC})
= inf({t ≥ 0 ; (|λ|/t)x ∈ C})
= |λ|ρ(x) .

In the last line we used the property derived in part a).

In particular, all of these properties show that if C is convex and circled, then the
Minkowski functional ρ(x) is a well defined semi-norm.
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Q2. Fréchet Space metric is indeed a metric

Let ρj : X → [0,∞), j ∈ N be a countable family of seminorms on a vector space
X that separates points - that is, for all x ∈ X\{0}, there is a k ∈ N such that
ρk(x) 6= 0. We note also that a seminorm ρj is a norm that is not positive definite,
so it obeys the triangle inequality and absolute homogeneity. We can then define
the Fréchet metric,

d(x, y) =
∞∑
j=1

2−j
ρj(x− y)

1 + ρj(x− y)
. (2.1)

It is first worth noting that by the ratio test (where the fraction is clearly less than
1 due to the positivity of the semi-norms), this series is indeed well defined in the
sense that is convergent.

It is obvious with the absolute homogeneity that we have symmetry. It is also
clear that d(x, y) ≥ 0 since the seminorms have this same property. Further, if
x = y then ρj(x− y) = ρj(0) = |0|ρj(x) = 0, so d(x, y) = 0 as well.

If d(x, y) = 0, then since it is a sum of non-negative terms, we must have

for all j ∈ N , ρj(x− y) = 0 . (2.2)

But since the family of semi-norms separates points, the only element of X that
satisfies this condition is 0, hence x− y = 0.

Clearly though for the triangle inequality we have some work to do. The stick-
ing point will clearly be separating the fraction, so we first consider the function
f : R+ → R+ defined by

f(a) =
a

1 + a
= 1− 1

1 + a
. (2.3)

We first see that f(a) is increasing since 1/(1 + a) is decreasing. We then want to
show the triangle inequality, f(a+ b) ≤ f(a) + f(b) for a, b ∈ R+. We observe that

f(a)

a
=

1

1 + a
≥ 1

1 + a+ b
=
f(a+ b)

a+ b
, and similarly

f(b)

b
≥ f(a+ b)

a+ b
, (2.4)

which respectively gives us

(a+ b)f(a) ≥ af(a+ b) and (a+ b)f(b) ≥ bf(a+ b) ,

and so combining the two inequalities gives

(a+ b)(f(a) + f(b)) ≥ (a+ b)f(a+ b) . (2.5)

Putting this inequality and the fact that f is increasing together, we have for
a, b ∈ R+,

f(a) ≤ f(a+ b) ≤ f(a) + f(b) . (2.6)
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Clearly we will then use a = ρj(x − y) and b = ρj(y − z) to establish the triangle
inequality for the metric.

We calculate

d(x, z) =
∞∑
j=1

2−j
ρj(x− z)

1 + ρj(x− z)

≤
∞∑
j=1

2−j
ρj(x− y) + ρj(y − z)

1 + ρj(x− y) + ρj(y − z)

≤
∞∑
j=1

2−j

(
ρj(x− y)

1 + ρj(x− y)
+

ρj(y − z)

1 + ρj(y − z)

)

=
∞∑
j=1

2−j
ρj(x− y)

1 + ρj(x− y)
+
∞∑
j=1

2−j
ρj(y − z)

1 + ρj(y − z)

= d(x, y) + d(y, z) . (2.7)

In the second line we used the triangle inequality of the seminorms and fact that f
was increasing. In the third line we used the triangle inequality from (2.6). Therefore
the metric d obeys the triangle inequality and all other metric properties, hence d is
a metric, thus giving us the fact that a locally convex vector space whose topology
is generated by a countable family of seminorms that separates points is metrizable.

4



Q4. Compact operators in different topologies

Part a)

We first construct an example of a sequence of compact operators Kn : `2 → `2

such that Kn → Id in the strong operator topology on L(`2). We first note that
the obvious choice may be to simply take Kn = Id - however, the identity is not
actually a compact operator. We know that the unit ball in the Banach space `2 is
not compact, i.e. the bounded sequence (ei)

∞
i=1 of unit vectors ei ∈ `2, have no con-

vergent subsequence. Therefore (Id ei)
∞
i=1 = (ei)

∞
i=1 also doesn’t have a convergent

subsequence, hence meaning the identity cannot be a compact operator.

Instead, we know from lectures that finite-rank operators are compact. We can
quickly confirm this. Take a bounded sequence (x(j))∞j=1 of elements x(j) ∈ `2 and

define Kn to be the projection of x(j) on to Cn - that is, given

x(j) = (x
(j)
1 , x

(j)
2 , x

(j)
3 , x

(j)
4 , . . . ) , (4.1)

we define for n ∈ N

Knx
(j) = (x

(j)
1 , . . . , x(j)n , 0, 0, . . . ) . (4.2)

Then the sequence (Knx
(j))∞j=1, which reads as

Knx
(1) = (x

(1)
1 , . . . , x(1)n , 0, 0, . . . )

Knx
(2) = (x

(2)
1 , . . . , x(2)n , 0, 0, . . . ) (4.3)

...

is bounded in Cn since by hypothesis (x(j))∞j=1 is bounded. Then, by the Bolzano
Weierstrass Theorem, any bounded sequence in Cn ∼= R2n admits a convergent sub-
sequence. Therefore we must have (Knx

(j))∞j=1 having a convergent subsequence,
therefore showing that the operator Kn is a compact operator.

Clearly then we have found a sequence of compact operators (Kn)∞n=1 that converge
to the identity in the strong operator topology since we have, for x ∈ `2,

lim
n→∞

‖Knx− Idx‖2 = lim
n→∞

∞∑
j=n+1

|xj|2 = 0 , (4.4)

since it is the tail of a necessarily convergent sequence in `2. Therefore, Kn → Id in
the strong operator topology (since we know Kn → K in SOT if and only if for all
x ∈ X we have Knx→ Kx in X).
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Part b)

Let X and Y be Banach spaces. From lectures we know that the space of compact
operators K(X, Y ) is a closed subset of the space of bounded operators L(X, Y ) in
the norm topology, that is, the topology induced by the operator norm. That is, if
Kn ∈ K(X, Y ) is a sequence of compact operators for n ∈ N, then if Kn → K in
the norm topology, then K is also compact (since a closed subset must contain its
limit points). Clearly then we can take the contrapositive of the this statement - if
K is not compact, then the sequence of compact operators Kn cannot converge in
the norm topology to K.

Now let (Kn)∞n=1 be any sequence of compact operators in L(`2) which converge
in the strong operator topology to Id. We argued in part a) that the identity opera-
tor Id is not compact. Therefore by the above argument, we cannot have Kn → Id
in the norm topology.

N.B. we hypothesised that Kn → Id in the strong norm topology simply because
we know that for L(X, Y ) we have

Weak operator topology ⊆ Strong operator topology ⊆ Norm topology ,

meaning it would be redundant to talk about convergence to the identity in the norm
topology if it didn’t converge in the strong operator topology in the first place.
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Q5. Spectral radius of Volterra operator

Let X be a Banach space. For any T ∈ L(X), the spectral radius is defined as

r(T ) := sup{|λ| : λ ∈ σ(T )} , (5.1)

where σ(T ) = {λ ∈ C : λI − T ∈ L(X) is not invertible} . (5.2)

Further, we know from lectures that under these hypothesis we also have

r(T ) = lim
n→∞

‖T n‖1/nL(X) . (5.3)

We consider the spectral radius of the Volterra integral operator onX = (C0[0, 1], ‖.‖0)
defined as

(Tf)(x) =

∫ x

0

f(y)dy . (5.4)

We can start by calculating

‖T‖L(X) = sup{‖Tf‖0 : ‖f‖0 = 1} . (5.5)

Let f ∈ C0[0, 1] be such that ‖f‖0 = 1, then we have

‖Tf‖0 = sup
x∈[0,1]

∣∣∣∣∫ x

0

f(y)dy

∣∣∣∣ ≤ sup
x∈[0,1]

∫ x

0

|f(y)|dy ≤ sup
x∈[0,1]

∫ x

0

1dy = 1 . (5.6)

But then by noting that for f(x) = 1 we have

‖Tf‖0 = sup
x∈[0,1]

∣∣∣∣∫ x

0

1dy

∣∣∣∣ = sup
x∈[0,1]

|x| = 1 , (5.7)

so clearly we must have ‖T‖L(X) = 1. We then seek to calculate ‖T n‖L(X) where we
have

(T nf)(x) =

∫ x

0

∫ y1

0

∫ y2

0

· · ·
∫ yn−1

0

f(yn)dyn . . . dy2 dy1 . (5.8)

We then appeal to Cauchy’s formula for repeated integration (which can be proven
with a very simple induction argument) which allows us to equivalently write

(T nf)(x) =
1

(n− 1)!

∫ x

0

(x− y)n−1f(y)dy . (5.9)

Then performing the same calculation as above for ‖f‖0 = 1 we have

‖Tf‖0 = sup
x∈[0,1]

∣∣∣∣ 1

(n− 1)!

∫ x

0

(x− y)n−1f(y)dy

∣∣∣∣
≤ sup

x∈[0,1]

1

(n− 1)!

∫ x

0

(x− y)n−1dy

= sup
x∈[0,1]

1

(n− 1)!

[
− 1

n
(x− y)n

]x
0

= sup
x∈[0,1]

1

n!
xn =

1

n!
. (5.10)
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In the second line we used the fact that (x − y)n−1 ≥ 0 for 0 ≤ y ≤ x, hence we
could drop the absolute value. Again noting that we could simply choose f(x) = 1
as before, this gives us

‖T n‖L(X) =
1

n!
. (5.11)

We then note that we have

lim
n→∞

(n!)1/n =∞ since ex ≥ xn

n!
, so (n!)1/n ≥ n

e
→∞ . (5.12)

Therefore, since we are taking the reciprocal of this limit, we have

r(T ) = lim
n→∞

‖T n‖1/nL(X) = lim
n→∞

(
1

n!

)1/n

= 0 . (5.13)

Then since we know that the spectrum is a non-empty subset (due to the analyticity
of the resolvent function), we have

σ(T ) = {0} . (5.14)
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