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Q1. Baire Category holds for open subset

It’s easy to chase your tail when dealing with such proofs, so lets first get our
definitions in order. For a topological space (X, T ), we define:

• U ⊆ X is open if U ∈ T . (1.1)

• U ⊆ X is closed if U c is open. (1.2)

• For U ⊆ X, the interior is U◦ =
⋃
{V ⊆ U | V is open in X} . (1.3)

• For U ⊆ X, the closure is U =
⋂
{W ⊇ U | W is closed in X} .

or equivalently U = U ∪ {x = lim
n→∞

xn | ∀n ∈ N, xn ∈ U} (1.4)

• For U ⊆ X, the boundary is ∂U = U \U◦ = U ∩ (X\U) . (1.5)

• U ⊆ X is dense in X if U = X . (1.6)

• U ⊆ X is nowhere dense in X if (U)◦ = ∅ . (1.7)

• U ⊂ X is first category (also called meager) in X if U is a countable

union of nowhere dense sets. U is second category if it is not (1.8)

first category.

• U ⊂ X is generic if U c is first category. (1.9)

The Baire Cateogry Theorem states that a complete metric space X is never the
countable union of nowhere dense sets, that is, X is always second category. Sup-
pose that X0 ⊂ X is an open subset of X - we will show that the conclusion of Baire
holds for this too.

We will first establish some necessary facts. Using the definition of the boundary
∂X0 = X0\X◦0 we can re-express the closure in terms of something more friendly,
namely we can calculate

∂X0 ∪X◦0 = (X0\X◦0 ) ∪X◦0 = (X0 ∪X◦0 )\(X◦0\X◦0 ) = X0 , (1.10)

where the last equality was because X◦0 ⊂ X0 and clearly X◦0\X◦0 = ∅. We can then
use the fact that since X0 is open, X◦0 = X0 and so we can write

X0 = X0 ∪ ∂X0 . (1.11)
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The strategy from here is to show that ∂X0 is a nowhere dense set. We first notice
that ∂X0 is a closed set since we can equivalently write ∂X0 = X0 ∩ (X\X0), and
since the closure of any set is closed, we have that the boundary is the intersection
of two closed sets and so is itself closed. This means (∂X0)

◦ = (∂X0)
◦, so now we

just need to show that the boundary has empty interior.

Since Xc
0 is closed, we know that its closure is equal to itself, hence from (1.5)

we can equivalently write ∂X0 = X0 ∩ Xc
0, and then since the interior of a finite

intersection is the intersection of the interiors, we can write

∂X◦0 = (X0 ∩Xc
0)◦ = (X0)

◦ ∩ (Xc
0)◦ . (1.12)

The last piece of the puzzle that we need is the fact that for any set U ⊂ X we have
(U c)◦ = (U)c:

U
c

=
(⋂
{W ⊇ U | W is closed in X}

)c
=
⋃
{W c ⊆ U c | W c is open in X} = (U c)◦ .

(1.13)

Therefore, returning to (1.12) we see that

∂X◦0 = (X0)
◦ ∩ (Xc

0)◦ = (X0)
◦ ∩ (X0)

c ⊂ X0 ∩ (X0)
c = ∅ . (1.14)

This gives us that (∂X0)
◦ = ∂X◦0 = ∅ and so the boundary of an open set X0 ⊂ X

is nowhere dense. We now have all the ingredients we need.

For a contradiction, suppose X0 is the countable union of nowhere dense sets Fn, so

X0 =
∞⋃
n=1

Fn . (1.15)

From (1.11), we have that

X0 =

(
∞⋃
n=1

Fn

)
∪ ∂X0 , (1.16)

meaning X0 is a countable union of nowhere dense sets. But from the Baire Category
Theorem, since X0 is closed and hence a complete metric space in its own right, it
cannot be first category. Hence we have derived a contradiction and so the open
X0 ⊂ X must also be second category, hence proving the statement.
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Q2. All the categories

Suppose X is a complete metric space, F ⊂ X is a closed subset and O ⊂ X is
open.

Part a)

Suppose F has an empty interior F ◦ = ∅. We know that for any topological space
we have F = F . Hence, (F )◦ = F ◦ = ∅ and so F itself is nowhere dense, hence it
is clearly a countable union of one nowhere dense set.

Suppose F is first category and can be written as F =
⋃∞
n=1 Fn where each Fn

is nowhere dense. Assume F has a non-empty interior for a contradiction. Then
there is an open ball Bε(x) ⊂ F that is covered by the sets Fn, which means we
can write Bε(x) =

⋃∞
n=1 Fn ∩Bε(x). But we can clearly see that each Fn ∩Bε(x) is

nowhere dense since we can write

(Fn ∩Bε(x))◦ ⊂ (Fn ∩Bε(x))◦ = (Fn)◦ ∩ (Bε(x))◦ = ∅ ∩ (Bε(x))◦ = ∅ , (2.1)

meaning that we have now shown Bε(x) must be first category. But by Baire’s
theorem, and the first question in particular, Bε(x) cannot first category as it is an
open subset of a complete metric space. Hence, we have a contradiction and so F
must have an empty interior, so F ◦ = ∅. So a closed F is first category if and only
if it has empty interior.

Part b)

Clearly, if O = ∅ then O is first category as the empty set is obviously nowhere
dense. If O is first category, then since O ⊂ X is an open subset of a complete
metric space, we know from the first question that it is also second category. The
only element in the intersection of the set of first category sets and the set of second
category sets is ∅, so O = ∅. Therefore an open O is of first category if and only if
it is empty.

Part c)

Suppose F is generic, then F c is first category. By part b), since F c is open it must
be empty so F c = ∅ so F = X. If F = X, then F c = Xc = ∅ so F c is first category
meaning F is generic.

Suppose O is generic, so Oc is first category. Oc is a closed set so using part a)
it must have an empty interior. If Oc contains no interior, then O is first category,
meaning O is generic.
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Q3. Lp([0, 1]) is nowhere dense in L1([0, 1])

Consider the Banach space Lp([0, 1]), which we have defined as the completion of

C0([0, 1]) with respect to the p-norm ‖f‖Lp = (
∫ 1

0
|f |p)1/p.

Part a)

Suppose f ∈ Lp([0, 1]) for some p > 1, meaning ‖f‖p exists. Hölder’s inequality
tells us that for p, q ∈ [1,∞] such that 1/p+ 1/q = 1 we have ‖fg‖1 ≤ ‖f‖p‖g‖q. In
taking g(x) = 1 we have

‖fg‖1 = ‖f‖1 ≤ ‖f‖p

(∫ 1

0

(1)
p

p−1dx

) p
p−1

= ‖f‖p , (3.1)

which means that ‖f‖1 also exists, hence f ∈ L1([0, 1]) (i.e. Lp([0, 1]) ⊂ L1([0, 1]))
as required.

Part b)

We will now consider the set

L1([0, 1])\Lp([0, 1]) = {f ∈ L1([0, 1]) | f /∈ Lp([0, 1])} (3.2)

and show that it is generic. To do this, we will consider the inclusion map

ι : Lp([0, 1]) ↪→ L1([0, 1]) (3.3)

f 7→ f

which is clearly linear and continuous between the two Banach spaces Lp([0, 1])
and L1([0, 1]), and from part a) we know that this is well defined. It is clear that
ι is not surjective: take the canonical example of g(x) = x−1/p ∈ L1([0, 1]) since
‖g‖1 = ( p

p−1)1/p, but is not convergent in Lp([0, 1]) which shows non surjectivity. We

will use this fact to show that the image ι(Lp([0, 1])) ⊂ L1([0, 1]) is a meager subset.

If we return to the proof of the Open Mapping Theorem, we can actually prove
a slightly more general results without changing the proof. We hypothesised that
T was a surjective continuous linear map between Banach spaces X and Y . How-
ever, the only reason we used the surjectivity of T was to show that the image of
X, namely T (X) = Y =

⋃∞
n=1 T (BX(n)) was not first category by Baire’s theorem

since Y was a complete metric space. So, if we change our hypothesis to “the image
of T (X) is not first category”, we can then follow the remainder of the proof of the
open mapping theorem to state the following result: If T : X → Y is a continuous
linear map between Banach spaces whose image is second category, then T is open.

From this statement, we can use it to deduce that under the same conditions, if
T is an open linear map between normed linear spaces, then it is surjective. Since
X and Y are open in their respective topologies, we know that T (X) ⊂ Y is an
open linear subspace - indeed it is all of Y , which we can show by contradiction.
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Suppose Y \T (X) is non-empty. Let y0 /∈ T (X), then since T (X) is a vector sub-
space, y0 6= 0. We can then find a sequence αn ∈ C such that αn → 0. Then for all
n, the sequence yn = any0 /∈ T (X), again due to the closure of multiplication in the
subspace. But with this construction, we have found a sequence yn whose elements
are not in T (X) but converges to 0 ∈ T (X). Hence since Y \T (X) doesn’t contain
its limit points, it is not closed. But we already have that T (X) must be open by
hypothesis causing the desired contradiction, showing that Y \T (X) is empty and
so T (X) = Y . So any open map with these conditions is surjective.

Summarising all of the above arguments, we now have:

If T : X → Y is a continuous linear map between Banach spaces whose image
is second category, then T is open and moreover, T is surjective.

Taking the contrapositive of this statement, we see that if T is not surjective, then
its image is not second category, i.e is first category. Putting this together with our
observation that the inclusion obeys all of the necessary hypotheses, we can con-
clude that since ι is not surjective, then ι(Lp([0, 1])) = Lp([0, 1]) ⊂ L1([0, 1]) is first
category in L1. Therefore the complement L1([0, 1])\Lp([0, 1]) is generic as required.
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Q4. Weak closure of unit sphere is unit ball

Let (X, ‖.‖) be an infinite dimensional Banach space with the weak topology, that is,
the weakest topology on X in which each functional ` ∈ X∗ is continuous. Consider
the unit sphere and unit ball in X,

S = {x ∈ X | ‖x‖ = 1} , (4.1)

and B = {x ∈ X | ‖x‖ ≤ 1} . (4.2)

We will show that in the weak topology, S = B. We first note that our basis
(neighbourhood) elements in the weak topology on X are of the form

Nλ1,...,λn;ε;x0 = {x ∈ X
∣∣ ∀i = 1, . . . , n , |λi(x− x0)| < ε, where λi ∈ X∗ } . (4.3)

We will start by showing that B ⊂ S. Without loss of generality, we will consider a
neighbourhood of x0 = 0 ∈ B, denoted Nλ1,...,λn;ε and show that 0 ∈ S in the weak
topology (where it clearly is not an element of S = S in the strong (norm) topology)
- that is, a weak open neighbourhood of 0 must intersect S.

Let O be a weak open set containing 0 ∈ B, then we know that we can find an
open neighbourhood of the form M = Nλ1,...,λn;ε for some finite collection of λi such
that M ⊂ O. The idea here is to find a ‘line’ (what turns out to be a hyperplane)
in some λk direction that intersects with S - in other words, |λi(k)| < ε for all
i = 1, . . . , n and some ‖k‖ = 1. Let us consider the map

Φ : X → Cn (4.4)

x 7→ (λ1(x), . . . , λn(x))

Due to the linearity of each λi, and the fact that each λi is bounded, we see that Φ
is a bounded linear map. We can consider the kernel of this map,

ker Φ = {x ∈ X
∣∣ Φ(x) = 0} = {x ∈ X

∣∣ ∀i = 1, . . . , n , |λi(x)| = 0} =
n⋂
i=1

kerλi .

(4.5)

Since Φ is a linear operator, we can use the rank nullity theorem to determine
the dimensionality of this kernel - clearly, since λi is linear, we already know that
0 ∈ ker Φ. Since dim(X) =∞ by hypothesis, we see that (since dim(imΦ) ≤ n),

dim(ker Φ) = dim(X)− dim(imΦ) ≥ dim(X)− n =∞ , (4.6)

meaning we can find another y ∈ X\{0} such that Φ(y) = 0. We can then rescale
our newfound y to put it onto the unit sphere: first start by observing that for α ∈ C
(or whatever other field we’re working in) and for this same y, we have for any λi
in our finite intersection in M

|λ(αy)| = |α||λi(y)| = 0 , (4.7)

meaning that αy ∈M . Hence, we can choose α = 1/‖y‖, meaning ‖αy‖ = 1, so we
choose αy to be our desired point on the sphere. Hence, since αy ∈M , we see that
our open neighbourhood of 0, M , intersects S, hence B ⊆ S.

6



To show that S ⊆ B, i.e. Bc ⊆ S
c

= (Sc)◦, we want to find an element x ∈ Bc (so
‖x‖ > 1) such that there exists a weak open neighbourhood around it that doesn’t
intersect the sphere S.

Take x0 ∈ Bc, so ‖x0‖ > 1. From the second corollary of the Hahn-Banach theo-
rem in class, we know that for any element x0 ∈ X there exists a linear functional
λ ∈ X∗ such that |λ(x0)| = ‖λ‖X∗‖x0‖ > ‖λ‖X∗ . Hence, we will use this λ and set
ε = |λ(x0)| − ‖λ‖X∗ to construct our weak open neighbourhood. We can consider
the neighbourhood

N(λ; ε) = {x ∈ X
∣∣ |λ(x)| < ε = |λ(x0)| − ‖λ‖X∗} . (4.8)

We can then translate this open neighbourhood to create another open neighbour-
hood

O = x0 +N(λ; ε) = {x0 + y ∈ X
∣∣ y ∈ N(λ; ε)} (4.9)

Clearly x0 ∈ O. To show that any y′ = x0 + y ∈ O has norm ‖y′‖ > 1 (so doesn’t
intersect the sphere), we first note that

|λ(x0 + y)| ≥
∣∣ |λ(x0)| − |λ(y)|

∣∣ , (4.10)

from the reverse triangle inequality, and then since y ∈ N(λ; ε) we have that

|λ(y)| < |λ(x0)| − ‖λ‖X∗ , so |λ(x0)| − |λ(y)| > ‖λ‖X∗ > 0 , (4.11)

and so combining these two things we get that

|λ(x0 + y)| > ‖λ‖X∗ = sup{|λ(x)|
∣∣ x ∈ X and ‖x‖ ≤ 1} . (4.12)

Due to the above equivalent version of the operator norm, this tells us that we must
have ‖x0 + y‖ > 1. Hence O is a weak open neighbourhood of x0 that doesn’t
intersect the unit sphere. Hence S ⊆ B, thus concluding the proof.
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