
Functional Analysis Assignment 2

Liam Carroll - 830916

Due Date: 6th May 2020

Q1. Bi-infinite sequences and Sobolev space

Define x = {xn}∞n=−∞ to be a bi-infinite sequence with xn ∈ C, indexed by Z. Let
s ∈ R be given. We define a norm on x as

‖x‖hs :=

 ∞∑
n=−∞

(1 + n2)s|xn|2
1/2

, (1.1)

and the L2-based Sobolev space of order s as

hs = {x = {xn}∞n=−∞ : ‖x‖hs <∞} . (1.2)

Part a)

We first show that hs is a normed linear space.

(i) ‖x‖hs = 0 ⇐⇒ x = 0
Suppose for x ∈ hs we have ‖x‖hs = 0. Then, taking squares we have

∞∑
n=−∞

(1 + n2)s|xn|2 = 0 ,

but clearly all terms (1 + n2)s|xn|2 ≥ 0, and (1 + n2)s 6= 0 for any value of
n ∈ Z or s ∈ R, so we must have |xn|2 = 0 for all n, so x = 0. The other
direction is obvious.

(ii) ‖αx‖hs = |α|‖x‖hs for all α ∈ C
We calculate for α ∈ C and x ∈ hs

‖αx‖hs =

 ∞∑
n=−∞

(1 + n2)s|αxn|2
1/2

=

|α|2 ∞∑
n=−∞

(1 + n2)s|xn|2
1/2

= |α|‖x‖hs .

(1.3)
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(iii) ‖x+ y‖hs ≤ ‖x‖hs + ‖y‖hs for all x, y ∈ hs

This bi-infinte business is clearly frustrating to work with - we like sequences
in N, not Z. So lets work with N instead.

We can formulate the natural bijection between Z and N by sending the posi-
tive integers to the even naturals, and the negative integers to the odd naturals.
That is, consider f : Z→ N and f−1 : N→ Z defined by

f(n) =

{
2n n ≥ 0

−2n− 1 n < 0
, and f−1(k) = (−1)k

⌈
k

2

⌉
. (1.4)

It is clear f does indeed define a bijection. Then in setting k = f(n) and
n = f−1(k) we can rewrite out sum of interest for x, y ∈ hs

‖x+ y‖2hs =
∞∑

n=−∞

(1 + n2)s|xn + yn|2

=
∞∑
k=0

1 +

(
(−1)k

⌈
k

2

⌉)2
s

|xf−1(k) + yf−1(k)|2

=
∞∑
k=0

(
1 +

⌈
k

2

⌉2)s

|xf−1(k) + yf−1(k)|2 , (1.5)

where we are permitted to rearrange these terms since x, y ∈ hs gives us that
x+y ∈ hs with elementary real analysis arguments, meaning x+y is absolutely
convergent. We can then assume the Minkowski inequality, ∞∑

k=0

|xk + yk|p
1/p

≤

 ∞∑
k=0

|xk|p
1/p

+

 ∞∑
k=0

|yk|p
1/p

, (1.6)

to conclude that

‖x+ y‖hs =

 ∞∑
n=−∞

(1 + n2)s|xn + yn|2
1/2

=

 ∞∑
k=0

(
1 +

⌈
k/2
⌉2)s |xf−1(k) + yf−1(k)|2

1/2

≤

 ∞∑
k=0

∣∣∣∣(1 +
⌈
k/2
⌉2)s/2

xf−1(k)

∣∣∣∣2
1/2

+

 ∞∑
k=0

∣∣∣∣(1 +
⌈
k/2
⌉2)s/2

yf−1(k)

∣∣∣∣2
1/2

=

 ∞∑
n=−∞

(1 + n2)s|xn|2
1/2

+

 ∞∑
n=−∞

(1 + n2)s|yn|2
1/2

= ‖x‖hs + ‖y‖hs , (1.7)

which proves the triangle inequality as desired.

Thus we conclude hs is a normed linear space.
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Part b)

The natural inner product 〈 . , . 〉 : hs × hs → C to define that induces the ‖.‖hs
norm is, for x, y ∈ hs,

〈x, y〉 =
∞∑

n=−∞

(1 + n2)s xn yn . (1.8)

This clearly induces the norm since

〈x, x〉 =
∞∑

n=−∞

(1 + n2)s xnxn =
∞∑

n=−∞

(1 + n2)s |xn|2 = ‖x‖2hs . (1.9)

We can then prove this is a well defined inner product:

(i) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ hs

We have

〈x+ y, z〉 =
∞∑

n=−∞

(1 + n2)s(xn + yn)zn

=
∞∑

n=−∞

(1 + n2)s(xn + yn)zn

=
∞∑

n=−∞

(1 + n2)sxnzn +
∞∑

n=−∞

(1 + n2)synzn

= 〈x, z〉+ 〈y, z〉 . (1.10)

(ii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 =⇒ x = 0 for all x ∈ hs

This is clear due to our identification of the norm in (1.9), hence we just
use these properties derived in part a.

(iii) 〈x, αy〉 = α〈x, y〉 for all x, y ∈ hs and α ∈ C

We calculate

〈x, αy〉 =
∞∑

n=−∞

(1 + n2)s xn αyn = α
∞∑

n=−∞

(1 + n2)s xn yn = α〈x, y〉 . (1.11)

(iv) 〈x, y〉 = 〈y, x〉 for all x, y ∈ hs

Noting that s ∈ R, we have

〈y, x〉 =
∞∑

n=−∞

(1 + n2)s yn xn =
∞∑

n=−∞

(1 + n2)s yn xn =
∞∑

n=−∞

(1 + n2)s xn yn = 〈x, y〉 .

(1.12)

Therefore our defined inner product is well defined, so (hs, 〈 , 〉) is an inner product
space.
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Part c)

We now want to show that hs is complete in the ‖.‖hs norm. We can do this by
identifying it with `2 space. We will appeal to our rewritten summation formula in
(1.5) to write, for x ∈ hs and f as defined in (1.4),

‖x‖hs =

 ∞∑
n=−∞

(1 + n2)s|xn|2
1/2

=

 ∞∑
k=0

∣∣∣∣(1 +
⌈
k/2
⌉2)s/2

xf−1(k)

∣∣∣∣2
1/2

. (1.13)

Since x ∈ hs we know that ‖x‖hs is finite. This leads us to defining a map g : hs → `2

and g−1 : `2 → hs with

hs 3 x 7→ g(x) =

{(
1 +

⌈
k/2
⌉2)s/2

xf−1(k)

}∞
k=0

, (1.14)

and `2 3 x̃ 7→ g−1(x̃) =
{(

1 + n2
)−s/2

x̃f(n)

}∞
n=−∞

. (1.15)

Just as a sanity check to make sure we don’t get too bogged down in the notation
here, we note that

(g−1 ◦ g)(x) =
{

(1 + n2)−s/2(1 + f−1(f(n))2)s/2 xf−1(f(n))

}∞
n=−∞

= {xn}∞n=−∞ ,
(1.16)

and similarly for (g ◦ g−1)(x̃). This map is well defined since, with the standard
norm on `2, we have

‖x‖hs = ‖g(x)‖2 , (1.17)

and since ‖x‖hs is finite, then ‖g(x)‖2 is clearly finite as well - i.e. for any x ∈ hs we
have g(x) ∈ `2. Noting the bijection arguments from the triangle inequality proof in
part a), we can conclude that g is a bijection between hs and `2. We also note that
since g is essentially just a rearrangement of terms, using the standard definitions
on sequence spaces, it is clear that g is linear.

In the first assignment, we proved that `p space is complete. Clearly then, if we
take a Cauchy sequence of elemenets X(j) = {x(j)}∞j=1 where x(j) = {x(j)n }∞n=1 ∈ hs,
then we know that there exists an element Y ∈ `2 such that

lim
j→∞
‖g(X(j))− Y ‖2 = 0 . (1.18)

Using the linearity of g and the fact that g−1(Y ) ∈ hs is well defined, we have

0 = lim
j→∞
‖g(X(j))− Y ‖2 = lim

j→∞
‖g(X(j) − g−1(Y ))‖2 = lim

j→∞
‖X(j) − g−1(Y )‖hs ,

(1.19)

which means we have found our candidate limit!

Therefore, we conclude that for a Cauchy sequence X(n) of sequences in hs, there
exists a Y ∈ `2, so a g−1(Y ) ∈ hs such that X(n) converges to g−1(Y ) under the
‖.‖hs norm. In other words, (hs, ‖.‖hs) is a Banach space.
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Q2. Separability of `p space (and friends)

We first prove that `p is separable - that is, there exists a subset A ⊂ `p such that
A is both countable and dense in `p.

We first claim that the set of finite sequences S is dense in `p where we define

S :=

x(n) = {x(n)i }∞i=0

for all i ∈ N0, x
(n)
i ∈ C,

if i ≤ n, x
(n)
i = xi,

if i > n, x
(n)
i = 0

 . (2.1)

To prove S ⊂ `p is dense, we need to show that any x ∈ `p can be expressed as a
limit of a sequence in S. Let x ∈ `p with x = {xi}∞i=0 be given and consider the
sequence of elements X = {x(n)}∞n=0 where x(n) ∈ S. Given that x is in `p we have
that ‖x‖p is finite which implies that x must converge to 0. Then

lim
n→∞

‖x− x(n)‖p = lim
n→∞

 ∞∑
i=0

|xi − x(n)i |p
1/p

=

 lim
n→∞

∞∑
i=n+1

|xi|p
1/p

= 0 , (2.2)

where the final equality is due to the fact that x converges to 0. Hence this shows
that S ⊂ `p is dense. It remains to find a countably dense subset. Clearly, since
we are working with C ∼= R2, we should investigate Q2 which is both countable and
dense in R2. That is, for any x

(n)
i ∈ C we can find a sequence

z(n,i) = {z(n,i)j }∞j=0 = {a(n,i)j }∞j=0 +
√
−1{b(n,i)j }∞j=0 , where a

(n,i)
j , b

(n,i)
j ∈ Q , (2.3)

such that x
(n)
i can be approximated by this sequence. That is, by the density of Q

we have

lim
j→∞
‖x(n)i − z

(n,i)
j ‖C ≤ lim

j→∞

(
|Re(x

(n)
i )− a(n,i)j |+ |Im(x

(n)
i )− b(n,i)j |

)
= 0 . (2.4)

This shows that every element x
(n)
i of a sequence x(n) ∈ S can be well approximated

by sequences z(n,i), that is, (2.4) tells us

‖x(n) − z(n,i)‖pp ≤
∞∑
i=0

|x(n)i − z(n,i)|p → 0 . (2.5)

Putting all of this together, we see that if we define

A :=

z(n) = {z(n,i)}∞i=0

z(n) is finite as in S and,
z(n,i) can be approximated by the rational

sequence {z(n,i)j }∞j=0 for z
(n,i)
j ∈ Q2

 (2.6)

then we see that A is countable (sequences of Q2 which is countable), and most
importantly A ∈ `p is dense since, using (2.2) and (2.4) we have for any x ∈ `p,
there exists a sequence z(n) = {z(n,i)}∞i=0 ∈ A with

‖x− z(n,i)‖p ≤ ‖x− z(n)‖p + ‖z(n) − z(n,i)‖p → 0 . (2.7)
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We then consider (c0, ‖.‖∞), the space of sequences that converge to 0. But this can
be done using an identical argument as above and merely replacing the p-norm with
the sup-norm. Then finite sequences are still dense in c0 since

lim
n→∞

‖x− x(n)‖∞ = lim
n→∞

sup
n∈N
|x− x(n)| = 0 , (2.8)

and we can still approximate each complex element by rationals that will also con-
verge in the sup-norm. Thus the argument is the same so c0 is also separable.

To show that (l∞, ‖.‖∞) is not separable, we wish to show that every dense sub-
set of l∞ is uncountable. We start by constructing a set of open balls in `∞. Let
I ⊂ N be an index set. We can construct a sequence eI ∈ `∞ as

eI = {eiI}∞i=0 where eiI =

{
1 if i ∈ I,
0 if i /∈ I

. (2.9)

Consider then any other index set J 6= I ⊂ N and its corresponding sequence eJ .
Then we have

‖eI − eJ‖∞ = sup
i∈N
|eiI − eiJ | = 1 . (2.10)

We can then construct an open set U of open disjoint balls surrounding the point
eI ,

U := {B(eI , ε = 1/2) | I ⊂ N} , (2.11)

where disjointness follows from (2.10) (i.e. the closest sequence eJ to eI is at least
1 away). We then see that Card(U) = Card(P(N)) and by Cantor’s theorem about
the cardinality of power sets, this shows that U is uncountable.

Let C ⊂ `∞ be a dense subset. By the definition of density, any neighbourhood
of a point x ∈ `∞ must contain a point y ∈ C. That is, every open ball B ∈ U
must contain a point y ∈ C, but since these balls are disjoint, these points y must
be distinct. Therefore for any dense subset C we must have

Card({y ∈ C : y ∈ B ∈ U}) = Card(U) , (2.12)

but U is uncountable from above, which proves that every dense subset of `∞ is
uncountable, which shows `∞ is not separable.
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Q3. Isomorphism of quotient space to

orthogonal complement

Let X be a Hilbert space and let M ⊂ X be a closed subspace. We want to prove
that for the natural map,

π : X → X/M = {x+M : x ∈ X}
x 7→ [x] = x+M , (3.1)

the restriction π|M⊥ : M⊥ → X/M is an isomorphism of M⊥ and X/M - that is, it
is a bijective isometry. We define

M⊥ = {x ∈ X : for all m ∈M, 〈m,x〉 = 0} , (3.2)

and for [x] ∈ X/M, ‖[x]‖X/M = inf
m∈M

‖x+m‖X , (3.3)

where we note from lectures that the norm on X/M is well defined. We also know
that for a closed subspace M ⊂ X we can write X = M ⊕M⊥. From now on for
notational convenience, assume that π refers to the restricted map π|M⊥ .

(i) π is surjective

Let [y] ∈ X/M be given. We want to show that there exists x ∈ M⊥ such
that π(x) = [y]. We first note that for the trivial case [y] = [0] we clearly have
0 ∈ M⊥ and π(0) = [0] is satisfied, so assume that [y] 6= [0]. Take an element
y + m ∈ [y] for m ∈ M and y ∈ X\M . We know that for any h ∈ X we can
write h = hm + hM⊥ , which tells us that y ∈ M⊥. Hence, for any [y] ∈ X/M
we are guaranteed to have y ∈M⊥ such that π(y) = [y], so π is surjective.

(ii) π is injective

Let x, y ∈ M⊥ be such that π(x) = π(y). Then [x] = [y], so [x − y] = [0], so
x− y ∈M . But since x, y ∈M⊥, this gives us for all m ∈M that

〈m,x〉 = 0 and 〈m, y〉 = 0, so 〈m,x〉 − 〈m, y〉 = 〈m,x− y〉 = 0 , (3.4)

so we also have x− y ∈M⊥. But since M ∩M⊥ = {0}, this implies x− y = 0
so clearly x = y and so π is injective.

(iii) π is an isometry

We want to show that π, which is clearly linear, is an isometry which is
equivalent to being norm-preserving due to that linearity. That is, for all
x ∈ M⊥ ⊂ X we want to show ‖x‖X = ‖π(x)‖X/M . Then we calculate, using
〈x,m〉 = 0 for all m ∈M and infm∈M ‖m‖2X = 0 since 0 ∈M ,

‖π(x)‖2X/M = inf
m∈M

‖x+m‖2X = inf
m∈M
〈x+m,x+m〉

= inf
m∈M

(
〈x, x〉+ 2Re〈x,m〉+ 〈m,m〉

)
= ‖x‖2X + inf

m∈M
‖m‖2X = ‖x‖2X ,

which shows the desired equality, hence π is an isometry.

Therefore π|M⊥ induces the isomorphism M⊥ ∼= X/M .
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Q4. Duals and not so duals

We first want to show that `∗1
∼= `∞. Define

`∗1 =

{
Lx : `1 → C

∣∣∣∣ ‖Lx‖`∗1 := sup
y∈`1\{0}

‖Lx(y)‖C
‖y‖1

<∞

}
, (4.1)

where we define the map

Φ : `∞ −→ `∗1
x = {xn}∞n=1 7−→ Lx : `1 −→ C where

Lx(y) =
∞∑
n=1

xnyn . (4.2)

Then we note that Φ is conjugate-linear due to the linearity of Lx, that is, for
x, z ∈ `∞ and α ∈ C,

Φ(x+ z) = Lx+z = Lx + Lz = Φ(x) + Φ(z) , (4.3)

and Φ(αx) = Lαx = ᾱLx = ᾱΦ(x) . (4.4)

We will first show that Φ is an isometry. Firstly, note that ‖Φ(x)‖`∗1 is bounded
above since Hölder’s inequality tells us for x ∈ `∞ and y ∈ `1,

‖Lx(y)‖C =

∣∣∣∣∣
∞∑
n=1

xnyn

∣∣∣∣∣ ≤
∞∑
n=1

|xnyn| = ‖xy‖1 ≤ ‖x‖∞‖y‖1 , (4.5)

which shows that

‖Φ(x)‖`∗1 = ‖Lx‖`∗1 = sup
y∈`1\{0}

‖Lx(y)‖C
‖y‖1

≤ ‖x‖∞ , (4.6)

which tells us that Φ is a bounded linear map since we at least have ‖Φ‖ ≤ 1. We
now want to show that ‖Φ(x)‖`∗1 is also bounded below by ‖x‖∞ - which reduces to
attempting to show that for all y ∈ `1 we have

‖Φ(x)‖`∗1 ≥
‖Lx(y)‖C
‖y‖1

≥ ‖x‖∞ .

Without loss of generality assume x 6= 0. We can then define the sequence
y = (xn/|xn|)ej for some j ∈ N, where ej is the standard basis vector with a 1 in
the j position and 0 everywhere else (and also assume that xj 6= 0). Then we have

‖y‖1 =
n∑
n=1

∣∣∣∣ xn|xn|ej
∣∣∣∣ = 1 , (4.7)

which then gives us

‖Lx(y)‖C =

∣∣∣∣∣
∞∑
n=1

xn
xn
|xn|

ej

∣∣∣∣∣ = |xj| . (4.8)
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Using these two facts we have

‖Φ(x)‖`∗1 ≥
‖Lx(y)‖C
‖y‖1

=
|xj|
1

= |xj| , (4.9)

but since this must be true for all j ∈ N, we conclude that

‖Φ(x)‖`∗1 ≥ sup
j∈N
|xj| = ‖x‖∞ . (4.10)

Combining this with (4.6) gives us the desired isometry, namely for all x ∈ `∞,

‖Φ(x)‖`∗1 = ‖x‖∞ . (4.11)

We now aim to show surjectivity, that is, for any λ ∈ `∗1, there exists a x ∈ `∞ such
that Lx = λ, that is, Lx(y) = λ(y) for all y ∈ `1. Let λ ∈ `∗1 be fixed. Consider the
sequence ei ∈ `1 defined in the standard way. Then to get the desired equality, we
have

Lx(ei) =
∞∑
n=1

xnei = xi so we need λ(ei) = xi , (4.12)

which leads us to define our sequence

x = {λ(en))}∞n=0 . (4.13)

We then check that x ∈ `∞. For any i ∈ N we have

|λ(ei)| ≤ ‖λ‖‖ei‖1 = ‖λ‖ <∞ (4.14)

which we know is finite since λ is in the dual space, i.e. is a bounded linear operator.
This tells us that for all n ∈ N we have

|xn| ≤ ‖λ‖ so ‖x‖∞ = sup
n∈N
|xn| ≤ ‖λ‖ <∞ , (4.15)

so we have x ∈ `∞. To conclude that Lx(y) = λ(y) for all y ∈ `1, we note that both
Lx and λ are both linear, and with any finite sequence y ∈ S defined in (2.1), we
have

Lx(y) = Lx(y1e1 + · · ·+ ynen)

= y1Lx(e1) + · · ·+ ynLx(en)

= y1λ(e1) + · · ·+ ynλ(en)

= λ(y) , (4.16)

but since the set of finite sequences is dense in `1, and Lx and λ agree on a dense
subset from the above calculation, we conclude that Lx(y) = λ(y) for all y ∈ `1 and
so Φ is surjective.

Injectivity is clear since if Lx(z) = Lx(z) for all z ∈ `1 then

∞∑
n=1

xnzi =
∞∑
n=1

ynzi so
∞∑
n=1

(xn − yn)zi = 0 so x = y . (4.17)

Therefore, Φ induces the isomorphism of Banach spaces `∞ ∼= `∗1.
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To show that `∗∞ � `1, we will show that in this case Φ : `1 → `∗∞ is not surjective
by appealing to the Hahn-Banach theorem. That is, there exist functionals Λ ∈ `∗∞
that are not of the form Lx.

Consider the subspace c ⊂ `∞ of convergent sequences. Then consider λ ∈ c∗

defined as

λ(x) = lim
n→∞

xn where |λ(x)| = | lim
n→∞

xn| ≤ sup
n∈N
|xn| = ‖x‖∞ , (4.18)

where we know that ‖x‖∞ exists since x is convergent. So we see that λ is a well
defined bounded linear functional, hence is in c∗. By the Hahn-Banach theorem,
this means we can find an extension Λ ∈ `∗∞ extending λ to `∗∞ and satisfying
‖Λ‖`∗∞ = ‖λ‖c∗ . Suppose Λ was of the form Lx for x ∈ `1. Then for ej ∈ c we would
have

Lx(ej) =
∞∑
n=1

xnej = xj , (4.19)

but since Λ must agree with λ on c, we have

Λ(ej) = λ(ej) = lim
n→∞

(. . . , 0, 1, 0, . . . ) = 0 , (4.20)

which implies that we must have

Λ(ej) = 0 = xj = Lx(ej) for all j ∈ N , (4.21)

meaning that Λ must be the 0 function since this is true for all x and j. But clearly
if we choose the constant sequence y = {k}∞n=1 ∈ c for some non-zero k ∈ C, then

Λ(y) = λ(y) = k , (4.22)

so Λ cannot be the 0 function. Hence we arrive at a contradiction and so we con-
clude that Λ cannot be of the form Lx - that is, there are functionals Λ ∈ `∗∞ such
that there is no x ∈ `1 that gives us Φ(x) = Lx = Λ. Therefore Φ is not surjective
and so `1 is not isomorphic to `∞.

Indeed, we proved in lectures that `∗∞
∼= c0. It is also worth noting that there

is a useful theorem proved in Reed and Simon that says if X∗ of a Banach space X
is separable, then X is also separable. In question 2 we showed that `1 is separable
but `∞ was not, which means that `1 could not be the dual of `∞.
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