Functional Analysis Assignment 2

Liam Carroll - 830916

Due Date: 6th May 2020

Q1. Bi-infinite sequences and Sobolev space

Define $x=\left\{x_{n}\right\}_{n=-\infty}^{\infty}$ to be a bi-infinite sequence with $x_{n} \in \mathbb{C}$, indexed by \mathbb{Z}. Let $s \in \mathbb{R}$ be given. We define a norm on x as

$$
\begin{equation*}
\|x\|_{h_{s}}:=\left(\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left|x_{n}\right|^{2}\right)^{1 / 2} \tag{1.1}
\end{equation*}
$$

and the L^{2}-based Sobolev space of order s as

$$
\begin{equation*}
h_{s}=\left\{x=\left\{x_{n}\right\}_{n=-\infty}^{\infty}:\|x\|_{h_{s}}<\infty\right\} . \tag{1.2}
\end{equation*}
$$

Part a)

We first show that h_{s} is a normed linear space.
(i) $\|x\|_{h_{s}}=0 \Longleftrightarrow x=0$

Suppose for $x \in h_{s}$ we have $\|x\|_{h_{s}}=0$. Then, taking squares we have

$$
\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left|x_{n}\right|^{2}=0
$$

but clearly all terms $\left(1+n^{2}\right)^{s}\left|x_{n}\right|^{2} \geq 0$, and $\left(1+n^{2}\right)^{s} \neq 0$ for any value of $n \in \mathbb{Z}$ or $s \in \mathbb{R}$, so we must have $\left|x_{n}\right|^{2}=0$ for all n, so $x=0$. The other direction is obvious.
(ii) $\|\alpha x\|_{h_{s}}=|\alpha|\|x\|_{h_{s}}$ for all $\alpha \in \mathbb{C}$

We calculate for $\alpha \in \mathbb{C}$ and $x \in h_{s}$

$$
\begin{equation*}
\|\alpha x\|_{h_{s}}=\left(\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left|\alpha x_{n}\right|^{2}\right)^{1 / 2}=\left(|\alpha|^{2} \sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left|x_{n}\right|^{2}\right)^{1 / 2}=|\alpha|\|x\|_{h_{s}} . \tag{1.3}
\end{equation*}
$$

(iii) $\|x+y\|_{h_{s}} \leq\|x\|_{h_{s}}+\|y\|_{h_{s}}$ for all $x, y \in h_{s}$

This bi-infinte business is clearly frustrating to work with - we like sequences in \mathbb{N}, not \mathbb{Z}. So lets work with \mathbb{N} instead.

We can formulate the natural bijection between \mathbb{Z} and \mathbb{N} by sending the positive integers to the even naturals, and the negative integers to the odd naturals. That is, consider $f: \mathbb{Z} \rightarrow \mathbb{N}$ and $f^{-1}: \mathbb{N} \rightarrow \mathbb{Z}$ defined by

$$
f(n)=\left\{\begin{array}{ll}
2 n & n \geq 0 \tag{1.4}\\
-2 n-1 & n<0
\end{array}, \quad \text { and } \quad f^{-1}(k)=(-1)^{k}\left\lceil\frac{k}{2}\right\rceil\right.
$$

It is clear f does indeed define a bijection. Then in setting $k=f(n)$ and $n=f^{-1}(k)$ we can rewrite out sum of interest for $x, y \in h_{s}$

$$
\begin{align*}
\|x+y\|_{h_{s}}^{2} & =\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left|x_{n}+y_{n}\right|^{2} \\
& =\sum_{k=0}^{\infty}\left(1+\left((-1)^{k}\left\lceil\frac{k}{2}\right\rceil\right)^{2}\right)^{s}\left|x_{f^{-1}(k)}+y_{f^{-1}(k)}\right|^{2} \\
& =\sum_{k=0}^{\infty}\left(1+\left\lceil\frac{k}{2}\right\rceil^{2}\right)^{s}\left|x_{f^{-1}(k)}+y_{f^{-1}(k)}\right|^{2} \tag{1.5}
\end{align*}
$$

where we are permitted to rearrange these terms since $x, y \in h_{s}$ gives us that $x+y \in h_{s}$ with elementary real analysis arguments, meaning $x+y$ is absolutely convergent. We can then assume the Minkowski inequality,

$$
\begin{equation*}
\left(\sum_{k=0}^{\infty}\left|x_{k}+y_{k}\right|^{p}\right)^{1 / p} \leq\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}+\left(\sum_{k=0}^{\infty}\left|y_{k}\right|^{p}\right)^{1 / p} \tag{1.6}
\end{equation*}
$$

to conclude that

$$
\begin{align*}
\|x+y\|_{h_{s}} & =\left(\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left|x_{n}+y_{n}\right|^{2}\right)^{1 / 2} \\
& =\left(\sum_{k=0}^{\infty}\left(1+\lceil k / 2\rceil^{2}\right)^{s}\left|x_{f^{-1}(k)}+y_{f^{-1}(k)}\right|^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{k=0}^{\infty}\left|\left(1+\lceil k / 2\rceil^{2}\right)^{s / 2} x_{f^{-1}(k)}\right|^{2}\right)^{1 / 2}+\left(\sum_{k=0}^{\infty}\left|\left(1+\lceil k / 2\rceil^{2}\right)^{s / 2} y_{f^{-1}(k)}\right|^{2}\right)^{1 / 2} \\
& =\left(\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left|x_{n}\right|^{2}\right)^{1 / 2}+\left(\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left|y_{n}\right|^{2}\right)^{1 / 2} \\
& =\|x\|_{h_{s}}+\|y\|_{h_{s}}, \tag{1.7}
\end{align*}
$$

which proves the triangle inequality as desired.
Thus we conclude h_{s} is a normed linear space.

Part b)

The natural inner product $\langle.,\rangle:. h_{s} \times h_{s} \rightarrow \mathbb{C}$ to define that induces the $\|.\|_{h_{s}}$ norm is, for $x, y \in h_{s}$,

$$
\begin{equation*}
\langle x, y\rangle=\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s} \overline{x_{n}} y_{n} \tag{1.8}
\end{equation*}
$$

This clearly induces the norm since

$$
\begin{equation*}
\langle x, x\rangle=\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s} \overline{x_{n}} x_{n}=\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left|x_{n}\right|^{2}=\|x\|_{h_{s}}^{2} . \tag{1.9}
\end{equation*}
$$

We can then prove this is a well defined inner product:
(i) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ for all $x, y, z \in h_{s}$

We have

$$
\begin{align*}
\langle x+y, z\rangle & =\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left(\overline{x_{n}+y_{n}}\right) z_{n} \\
& =\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left(\overline{x_{n}}+\overline{y_{n}}\right) z_{n} \\
& =\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s} \overline{x_{n}} z_{n}+\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s} \overline{y_{n}} z_{n} \\
& =\langle x, z\rangle+\langle y, z\rangle . \tag{1.10}
\end{align*}
$$

(ii) $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longrightarrow x=0$ for all $x \in h_{s}$

This is clear due to our identification of the norm in (1.9), hence we just use these properties derived in part a.
(iii) $\langle x, \alpha y\rangle=\alpha\langle x, y\rangle$ for all $x, y \in h_{s}$ and $\alpha \in \mathbb{C}$

We calculate

$$
\begin{equation*}
\langle x, \alpha y\rangle=\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s} \overline{x_{n}} \alpha y_{n}=\alpha \sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s} \overline{x_{n}} y_{n}=\alpha\langle x, y\rangle . \tag{1.11}
\end{equation*}
$$

(iv) $\langle x, y\rangle=\overline{\langle y, x\rangle}$ for all $x, y \in h_{s}$

Noting that $s \in \mathbb{R}$, we have

$$
\begin{equation*}
\overline{\langle y, x\rangle}=\overline{\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s} \overline{y_{n}} x_{n}}=\sum_{n=-\infty}^{\infty} \overline{\left(1+n^{2}\right)^{s} \overline{y_{n}} x_{n}}=\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s} \overline{x_{n}} y_{n}=\langle x, y\rangle . \tag{1.12}
\end{equation*}
$$

Therefore our defined inner product is well defined, so $\left(h_{s},\langle\rangle,\right)$ is an inner product space.

Part c)

We now want to show that h_{s} is complete in the $\|.\|_{h_{s}}$ norm. We can do this by identifying it with ℓ^{2} space. We will appeal to our rewritten summation formula in (1.5) to write, for $x \in h_{s}$ and f as defined in (1.4),

$$
\begin{equation*}
\|x\|_{h_{s}}=\left(\sum_{n=-\infty}^{\infty}\left(1+n^{2}\right)^{s}\left|x_{n}\right|^{2}\right)^{1 / 2}=\left(\sum_{k=0}^{\infty}\left|\left(1+\lceil k / 2\rceil^{2}\right)^{s / 2} x_{f^{-1}(k)}\right|^{2}\right)^{1 / 2} \tag{1.13}
\end{equation*}
$$

Since $x \in h_{s}$ we know that $\|x\|_{h_{s}}$ is finite. This leads us to defining a map $g: h_{s} \rightarrow \ell^{2}$ and $g^{-1}: \ell^{2} \rightarrow h_{s}$ with

$$
\begin{align*}
& \qquad h_{s} \ni x \mapsto g(x)=\left\{\left(1+\lceil k / 2\rceil^{2}\right)^{s / 2} x_{f^{-1}(k)}\right\}_{k=0}^{\infty}, \tag{1.14}\\
& \text { and } \quad \ell^{2} \ni \tilde{x} \mapsto g^{-1}(\tilde{x})=\left\{\left(1+n^{2}\right)^{-s / 2} \tilde{x}_{f(n)}\right\}_{n=-\infty}^{\infty} . \tag{1.15}
\end{align*}
$$

Just as a sanity check to make sure we don't get too bogged down in the notation here, we note that

$$
\begin{equation*}
\left(g^{-1} \circ g\right)(x)=\left\{\left(1+n^{2}\right)^{-s / 2}\left(1+f^{-1}(f(n))^{2}\right)^{s / 2} x_{f^{-1}(f(n))}\right\}_{n=-\infty}^{\infty}=\left\{x_{n}\right\}_{n=-\infty}^{\infty} \tag{1.16}
\end{equation*}
$$

and similarly for $\left(g \circ g^{-1}\right)(\tilde{x})$. This map is well defined since, with the standard norm on ℓ^{2}, we have

$$
\begin{equation*}
\|x\|_{h_{s}}=\|g(x)\|_{2} \tag{1.17}
\end{equation*}
$$

and since $\|x\|_{h_{s}}$ is finite, then $\|g(x)\|_{2}$ is clearly finite as well - i.e. for any $x \in h_{s}$ we have $g(x) \in \ell^{2}$. Noting the bijection arguments from the triangle inequality proof in part a), we can conclude that g is a bijection between h_{s} and ℓ^{2}. We also note that since g is essentially just a rearrangement of terms, using the standard definitions on sequence spaces, it is clear that g is linear.

In the first assignment, we proved that ℓ^{p} space is complete. Clearly then, if we take a Cauchy sequence of elemenets $X^{(j)}=\left\{x^{(j)}\right\}_{j=1}^{\infty}$ where $x^{(j)}=\left\{x_{n}^{(j)}\right\}_{n=1}^{\infty} \in h_{s}$, then we know that there exists an element $Y \in \ell^{2}$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|g\left(X^{(j)}\right)-Y\right\|_{2}=0 \tag{1.18}
\end{equation*}
$$

Using the linearity of g and the fact that $g^{-1}(Y) \in h_{s}$ is well defined, we have

$$
\begin{equation*}
0=\lim _{j \rightarrow \infty}\left\|g\left(X^{(j)}\right)-Y\right\|_{2}=\lim _{j \rightarrow \infty}\left\|g\left(X^{(j)}-g^{-1}(Y)\right)\right\|_{2}=\lim _{j \rightarrow \infty}\left\|X^{(j)}-g^{-1}(Y)\right\|_{h_{s}} \tag{1.19}
\end{equation*}
$$

which means we have found our candidate limit!
Therefore, we conclude that for a Cauchy sequence $X^{(n)}$ of sequences in h_{s}, there exists a $Y \in \ell^{2}$, so a $g^{-1}(Y) \in h_{s}$ such that $X^{(n)}$ converges to $g^{-1}(Y)$ under the $\|\cdot\|_{h_{s}}$ norm. In other words, $\left(h_{s},\|\cdot\|_{h_{s}}\right)$ is a Banach space.

Q2. Separability of ℓ^{p} space (and friends)

We first prove that ℓ^{p} is separable - that is, there exists a subset $A \subset \ell^{p}$ such that A is both countable and dense in ℓ^{p}.

We first claim that the set of finite sequences S is dense in ℓ^{p} where we define

$$
S:=\left\{\begin{array}{l|l}
x^{(n)}=\left\{x_{i}^{(n)}\right\}_{i=0}^{\infty} & \begin{array}{l}
\text { for all } i \in \mathbb{N}_{0}, x_{i}^{(n)} \in \mathbb{C}, \\
\text { if } i \leq n, x_{i}^{(n)}=x_{i}, \\
\text { if } i>n, x_{i}^{(n)}=0
\end{array} \tag{2.1}
\end{array}\right\}
$$

To prove $S \subset \ell^{p}$ is dense, we need to show that any $x \in \ell^{p}$ can be expressed as a limit of a sequence in S. Let $x \in \ell^{p}$ with $x=\left\{x_{i}\right\}_{i=0}^{\infty}$ be given and consider the sequence of elements $X=\left\{x^{(n)}\right\}_{n=0}^{\infty}$ where $x^{(n)} \in S$. Given that x is in ℓ^{p} we have that $\|x\|_{p}$ is finite which implies that x must converge to 0 . Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x-x^{(n)}\right\|_{p}=\lim _{n \rightarrow \infty}\left(\sum_{i=0}^{\infty}\left|x_{i}-x_{i}^{(n)}\right|^{p}\right)^{1 / p}=\left(\lim _{n \rightarrow \infty} \sum_{i=n+1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}=0 \tag{2.2}
\end{equation*}
$$

where the final equality is due to the fact that x converges to 0 . Hence this shows that $S \subset \ell^{p}$ is dense. It remains to find a countably dense subset. Clearly, since we are working with $\mathbb{C} \cong \mathbb{R}^{2}$, we should investigate \mathbb{Q}^{2} which is both countable and dense in \mathbb{R}^{2}. That is, for any $x_{i}^{(n)} \in \mathbb{C}$ we can find a sequence

$$
\begin{equation*}
z^{(n, i)}=\left\{z_{j}^{(n, i)}\right\}_{j=0}^{\infty}=\left\{a_{j}^{(n, i)}\right\}_{j=0}^{\infty}+\sqrt{-1}\left\{b_{j}^{(n, i)}\right\}_{j=0}^{\infty}, \quad \text { where } \quad a_{j}^{(n, i)}, b_{j}^{(n, i)} \in \mathbb{Q} \tag{2.3}
\end{equation*}
$$

such that $x_{i}^{(n)}$ can be approximated by this sequence. That is, by the density of \mathbb{Q} we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|x_{i}^{(n)}-z_{j}^{(n, i)}\right\|_{\mathbb{C}} \leq \lim _{j \rightarrow \infty}\left(\left|\operatorname{Re}\left(x_{i}^{(n)}\right)-a_{j}^{(n, i)}\right|+\left|\operatorname{Im}\left(x_{i}^{(n)}\right)-b_{j}^{(n, i)}\right|\right)=0 . \tag{2.4}
\end{equation*}
$$

This shows that every element $x_{i}^{(n)}$ of a sequence $x^{(n)} \in S$ can be well approximated by sequences $z^{(n, i)}$, that is, (2.4) tells us

$$
\begin{equation*}
\left\|x^{(n)}-z^{(n, i)}\right\|_{p}^{p} \leq \sum_{i=0}^{\infty}\left|x_{i}^{(n)}-z^{(n, i)}\right|^{p} \rightarrow 0 . \tag{2.5}
\end{equation*}
$$

Putting all of this together, we see that if we define

$$
A:=\left\{\begin{array}{l|l}
z^{(n)}=\left\{z^{(n, i)}\right\}_{i=0}^{\infty} & \begin{array}{l}
z^{(n)} \text { is finite as in } S \text { and, } \\
z^{(n, i)} \text { can be approximated by the rational } \\
\text { sequence }\left\{z_{j}^{(n, i)}\right\}_{j=0}^{\infty} \text { for } z_{j}^{(n, i)} \in \mathbb{Q}^{2}
\end{array} \tag{2.6}
\end{array}\right\}
$$

then we see that A is countable (sequences of \mathbb{Q}^{2} which is countable), and most importantly $A \in \ell^{p}$ is dense since, using (2.2) and (2.4) we have for any $x \in \ell^{p}$, there exists a sequence $z^{(n)}=\left\{z^{(n, i)}\right\}_{i=0}^{\infty} \in A$ with

$$
\begin{equation*}
\left\|x-z^{(n, i)}\right\|_{p} \leq\left\|x-z^{(n)}\right\|_{p}+\left\|z^{(n)}-z^{(n, i)}\right\|_{p} \rightarrow 0 \tag{2.7}
\end{equation*}
$$

We then consider $\left(c_{0},\|\cdot\|_{\infty}\right)$, the space of sequences that converge to 0 . But this can be done using an identical argument as above and merely replacing the p-norm with the sup-norm. Then finite sequences are still dense in c_{0} since

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} \| x-x^{(} n\right) \|_{\infty}=\lim _{n \rightarrow \infty} \sup _{n \in \mathbb{N}}\left|x-x^{(n)}\right|=0, \tag{2.8}
\end{equation*}
$$

and we can still approximate each complex element by rationals that will also converge in the sup-norm. Thus the argument is the same so c_{0} is also separable.

To show that $\left(l^{\infty},\|.\|_{\infty}\right)$ is not separable, we wish to show that every dense subset of l^{∞} is uncountable. We start by constructing a set of open balls in ℓ^{∞}. Let $I \subset \mathbb{N}$ be an index set. We can construct a sequence $e_{I} \in \ell^{\infty}$ as

$$
e_{I}=\left\{e_{I}^{i}\right\}_{i=0}^{\infty} \quad \text { where } \quad e_{I}^{i}=\left\{\begin{array}{ll}
1 & \text { if } i \in I, \tag{2.9}\\
0 & \text { if } i \notin I
\end{array} .\right.
$$

Consider then any other index set $J \neq I \subset \mathbb{N}$ and its corresponding sequence e_{J}. Then we have

$$
\begin{equation*}
\left\|e_{I}-e_{J}\right\|_{\infty}=\sup _{i \in \mathbb{N}}\left|e_{I}^{i}-e_{J}^{i}\right|=1 \tag{2.10}
\end{equation*}
$$

We can then construct an open set U of open disjoint balls surrounding the point e_{I},

$$
\begin{equation*}
U:=\left\{B\left(e_{I}, \varepsilon=1 / 2\right) \mid I \subset \mathbb{N}\right\}, \tag{2.11}
\end{equation*}
$$

where disjointness follows from (2.10) (i.e. the closest sequence e_{J} to e_{I} is at least 1 away). We then see that $\operatorname{Card}(U)=\operatorname{Card}(\mathcal{P}(\mathbb{N}))$ and by Cantor's theorem about the cardinality of power sets, this shows that U is uncountable.

Let $C \subset \ell^{\infty}$ be a dense subset. By the definition of density, any neighbourhood of a point $x \in \ell^{\infty}$ must contain a point $y \in C$. That is, every open ball $B \in U$ must contain a point $y \in C$, but since these balls are disjoint, these points y must be distinct. Therefore for any dense subset C we must have

$$
\begin{equation*}
\operatorname{Card}(\{y \in C: y \in B \in U\})=\operatorname{Card}(U), \tag{2.12}
\end{equation*}
$$

but U is uncountable from above, which proves that every dense subset of ℓ^{∞} is uncountable, which shows ℓ^{∞} is not separable.

Q3. Isomorphism of quotient space to orthogonal complement

Let X be a Hilbert space and let $M \subset X$ be a closed subspace. We want to prove that for the natural map,

$$
\begin{align*}
\pi: X & \rightarrow X / M=\{x+M: x \in X\} \\
x & \mapsto[x]=x+M, \tag{3.1}
\end{align*}
$$

the restriction $\left.\pi\right|_{M^{\perp}}: M^{\perp} \rightarrow X / M$ is an isomorphism of M^{\perp} and X / M - that is, it is a bijective isometry. We define

$$
\begin{gather*}
\quad M^{\perp}=\{x \in X: \text { for all } m \in M,\langle m, x\rangle=0\} \tag{3.2}\\
\text { and } \quad \text { for }[x] \in X / M, \quad\|[x]\|_{X / M}=\inf _{m \in M}\|x+m\|_{X}, \tag{3.3}
\end{gather*}
$$

where we note from lectures that the norm on X / M is well defined. We also know that for a closed subspace $M \subset X$ we can write $X=M \oplus M^{\perp}$. From now on for notational convenience, assume that π refers to the restricted map $\left.\pi\right|_{M^{\perp}}$.
(i) π is surjective

Let $[y] \in X / M$ be given. We want to show that there exists $x \in M^{\perp}$ such that $\pi(x)=[y]$. We first note that for the trivial case $[y]=[0]$ we clearly have $0 \in M^{\perp}$ and $\pi(0)=[0]$ is satisfied, so assume that $[y] \neq[0]$. Take an element $y+m \in[y]$ for $m \in M$ and $y \in X \backslash M$. We know that for any $h \in X$ we can write $h=h_{m}+h_{M^{\perp}}$, which tells us that $y \in M^{\perp}$. Hence, for any $[y] \in X / M$ we are guaranteed to have $y \in M^{\perp}$ such that $\pi(y)=[y]$, so π is surjective.
(ii) π is injective

Let $x, y \in M^{\perp}$ be such that $\pi(x)=\pi(y)$. Then $[x]=[y]$, so $[x-y]=[0]$, so $x-y \in M$. But since $x, y \in M^{\perp}$, this gives us for all $m \in M$ that

$$
\begin{equation*}
\langle m, x\rangle=0 \quad \text { and } \quad\langle m, y\rangle=0, \quad \text { so } \quad\langle m, x\rangle-\langle m, y\rangle=\langle m, x-y\rangle=0, \tag{3.4}
\end{equation*}
$$

so we also have $x-y \in M^{\perp}$. But since $M \cap M^{\perp}=\{0\}$, this implies $x-y=0$ so clearly $x=y$ and so π is injective.
(iii) π is an isometry

We want to show that π, which is clearly linear, is an isometry which is equivalent to being norm-preserving due to that linearity. That is, for all $x \in M^{\perp} \subset X$ we want to show $\|x\|_{X}=\|\pi(x)\|_{X / M}$. Then we calculate, using $\langle x, m\rangle=0$ for all $m \in M$ and $\inf _{m \in M}\|m\|_{X}^{2}=0$ since $0 \in M$,

$$
\begin{aligned}
\|\pi(x)\|_{X / M}^{2}=\inf _{m \in M}\|x+m\|_{X}^{2} & =\inf _{m \in M}\langle x+m, x+m\rangle \\
& =\inf _{m \in M}(\langle x, x\rangle+2 \operatorname{Re}\langle x, m\rangle+\langle m, m\rangle) \\
& =\|x\|_{X}^{2}+\inf _{m \in M}\|m\|_{X}^{2}=\|x\|_{X}^{2},
\end{aligned}
$$

which shows the desired equality, hence π is an isometry.
Therefore $\left.\pi\right|_{M^{\perp}}$ induces the isomorphism $M^{\perp} \cong X / M$.

Q4. Duals and not so duals

We first want to show that $\ell_{1}^{*} \cong \ell_{\infty}$. Define

$$
\begin{equation*}
\ell_{1}^{*}=\left\{L_{x}: \ell_{1} \rightarrow \mathbb{C} \mid\left\|L_{x}\right\|_{\ell_{1}^{*}}:=\sup _{y \in \ell_{1} \backslash\{0\}} \frac{\left\|L_{x}(y)\right\|_{\mathbb{C}}}{\|y\|_{1}}<\infty\right\} \tag{4.1}
\end{equation*}
$$

where we define the map

$$
\begin{align*}
& \Phi: \ell_{\infty} \longrightarrow \ell_{1}^{*} \\
& x=\left\{x_{n}\right\}_{n=1}^{\infty} \longmapsto L_{x}: \ell_{1} \longrightarrow \mathbb{C} \quad \text { where } \\
& L_{x}(y)=\sum_{n=1}^{\infty} \overline{x_{n}} y_{n} . \tag{4.2}
\end{align*}
$$

Then we note that Φ is conjugate-linear due to the linearity of L_{x}, that is, for $x, z \in \ell_{\infty}$ and $\alpha \in \mathbb{C}$,

$$
\begin{gather*}
\Phi(x+z)=L_{x+z}=L_{x}+L_{z}=\Phi(x)+\Phi(z), \tag{4.3}\\
\quad \text { and } \quad \Phi(\alpha x)=L_{\alpha x}=\bar{\alpha} L_{x}=\bar{\alpha} \Phi(x) . \tag{4.4}
\end{gather*}
$$

We will first show that Φ is an isometry. Firstly, note that $\|\Phi(x)\|_{\ell_{1}^{*}}$ is bounded above since Hölder's inequality tells us for $x \in \ell_{\infty}$ and $y \in \ell_{1}$,

$$
\begin{equation*}
\left\|L_{x}(y)\right\|_{\mathbb{C}}=\left|\sum_{n=1}^{\infty} \overline{x_{n}} y_{n}\right| \leq \sum_{n=1}^{\infty}\left|\overline{x_{n}} y_{n}\right|=\|x y\|_{1} \leq\|x\|_{\infty}\|y\|_{1}, \tag{4.5}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
\|\Phi(x)\|_{\ell_{1}^{*}}=\left\|L_{x}\right\|_{\ell_{1}^{*}}=\sup _{y \in \ell_{1} \backslash\{0\}} \frac{\left\|L_{x}(y)\right\|_{\mathbb{C}}}{\|y\|_{1}} \leq\|x\|_{\infty} \tag{4.6}
\end{equation*}
$$

which tells us that Φ is a bounded linear map since we at least have $\|\Phi\| \leq 1$. We now want to show that $\|\Phi(x)\|_{\ell_{1}^{*}}$ is also bounded below by $\|x\|_{\infty}$ - which reduces to attempting to show that for all $y \in \ell_{1}$ we have

$$
\|\Phi(x)\|_{\ell_{1}^{*}} \geq \frac{\left\|L_{x}(y)\right\|_{\mathbb{C}}}{\|y\|_{1}} \geq\|x\|_{\infty} .
$$

Without loss of generality assume $x \neq 0$. We can then define the sequence $y=\left(x_{n} /\left|x_{n}\right|\right) e_{j}$ for some $j \in \mathbb{N}$, where e_{j} is the standard basis vector with a 1 in the j position and 0 everywhere else (and also assume that $x_{j} \neq 0$). Then we have

$$
\begin{equation*}
\|y\|_{1}=\sum_{n=1}^{n}\left|\frac{x_{n}}{\left|x_{n}\right|} e_{j}\right|=1, \tag{4.7}
\end{equation*}
$$

which then gives us

$$
\begin{equation*}
\left\|L_{x}(y)\right\|_{\mathbb{C}}=\left|\sum_{n=1}^{\infty} \overline{x_{n}} \frac{x_{n}}{\left|x_{n}\right|} e_{j}\right|=\left|x_{j}\right| . \tag{4.8}
\end{equation*}
$$

Using these two facts we have

$$
\begin{equation*}
\|\Phi(x)\|_{\ell_{1}^{*}} \geq \frac{\left\|L_{x}(y)\right\|_{\mathbb{C}}}{\|y\|_{1}}=\frac{\left|x_{j}\right|}{1}=\left|x_{j}\right| \tag{4.9}
\end{equation*}
$$

but since this must be true for all $j \in \mathbb{N}$, we conclude that

$$
\begin{equation*}
\|\Phi(x)\|_{\ell_{1}^{*}} \geq \sup _{j \in \mathbb{N}}\left|x_{j}\right|=\|x\|_{\infty} . \tag{4.10}
\end{equation*}
$$

Combining this with (4.6) gives us the desired isometry, namely for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
\|\Phi(x)\|_{\ell_{1}^{*}}=\|x\|_{\infty} . \tag{4.11}
\end{equation*}
$$

We now aim to show surjectivity, that is, for any $\lambda \in \ell_{1}^{*}$, there exists a $x \in \ell_{\infty}$ such that $L_{x}=\lambda$, that is, $L_{x}(y)=\lambda(y)$ for all $y \in \ell_{1}$. Let $\lambda \in \ell_{1}^{*}$ be fixed. Consider the sequence $e_{i} \in \ell_{1}$ defined in the standard way. Then to get the desired equality, we have

$$
\begin{equation*}
L_{x}\left(e_{i}\right)=\sum_{n=1}^{\infty} \overline{x_{n}} e_{i}=\overline{x_{i}} \quad \text { so we need } \quad \overline{\lambda\left(e_{i}\right)}=x_{i} \tag{4.12}
\end{equation*}
$$

which leads us to define our sequence

$$
\begin{equation*}
\left.x=\left\{\overline{\lambda\left(e_{n}\right)}\right)\right\}_{n=0}^{\infty} \tag{4.13}
\end{equation*}
$$

We then check that $x \in \ell_{\infty}$. For any $i \in \mathbb{N}$ we have

$$
\begin{equation*}
\left|\lambda\left(e_{i}\right)\right| \leq\|\lambda\|\left\|e_{i}\right\|_{1}=\|\lambda\|<\infty \tag{4.14}
\end{equation*}
$$

which we know is finite since λ is in the dual space, i.e. is a bounded linear operator. This tells us that for all $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left|x_{n}\right| \leq\|\lambda\| \quad \text { so } \quad\|x\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right| \leq\|\lambda\|<\infty \tag{4.15}
\end{equation*}
$$

so we have $x \in \ell_{\infty}$. To conclude that $L_{x}(y)=\lambda(y)$ for all $y \in \ell_{1}$, we note that both L_{x} and λ are both linear, and with any finite sequence $y \in S$ defined in (2.1), we have

$$
\begin{align*}
L_{x}(y) & =L_{x}\left(y_{1} e_{1}+\cdots+y_{n} e_{n}\right) \\
& =y_{1} L_{x}\left(e_{1}\right)+\cdots+y_{n} L_{x}\left(e_{n}\right) \\
& =y_{1} \lambda\left(e_{1}\right)+\cdots+y_{n} \lambda\left(e_{n}\right) \\
& =\lambda(y), \tag{4.16}
\end{align*}
$$

but since the set of finite sequences is dense in ℓ_{1}, and L_{x} and λ agree on a dense subset from the above calculation, we conclude that $L_{x}(y)=\lambda(y)$ for all $y \in \ell_{1}$ and so Φ is surjective.

Injectivity is clear since if $L_{x}(z)=L_{x}(z)$ for all $z \in \ell_{1}$ then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \overline{x_{n}} z_{i}=\sum_{n=1}^{\infty} \overline{y_{n}} z_{i} \quad \text { so } \quad \sum_{n=1}^{\infty}\left(\overline{x_{n}-y_{n}}\right) z_{i}=0 \quad \text { so } x=y . \tag{4.17}
\end{equation*}
$$

Therefore, Φ induces the isomorphism of Banach spaces $\ell_{\infty} \cong \ell_{1}^{*}$.

To show that $\ell_{\infty}^{*} \not \neq \ell_{1}$, we will show that in this case $\Phi: \ell_{1} \rightarrow \ell_{\infty}^{*}$ is not surjective by appealing to the Hahn-Banach theorem. That is, there exist functionals $\Lambda \in \ell_{\infty}^{*}$ that are not of the form L_{x}.

Consider the subspace $c \subset \ell_{\infty}$ of convergent sequences. Then consider $\lambda \in c^{*}$ defined as

$$
\begin{equation*}
\lambda(x)=\lim _{n \rightarrow \infty} x_{n} \quad \text { where } \quad|\lambda(x)|=\left|\lim _{n \rightarrow \infty} x_{n}\right| \leq \sup _{n \in \mathbb{N}}\left|x_{n}\right|=\|x\|_{\infty} \tag{4.18}
\end{equation*}
$$

where we know that $\|x\|_{\infty}$ exists since x is convergent. So we see that λ is a well defined bounded linear functional, hence is in c^{*}. By the Hahn-Banach theorem, this means we can find an extension $\Lambda \in \ell_{\infty}^{*}$ extending λ to ℓ_{∞}^{*} and satisfying $\|\Lambda\|_{\ell_{\infty}^{*}}=\|\lambda\|_{c^{*}}$. Suppose Λ was of the form L_{x} for $x \in \ell_{1}$. Then for $e_{j} \in c$ we would have

$$
\begin{equation*}
L_{x}\left(e_{j}\right)=\sum_{n=1}^{\infty} x_{n} e_{j}=x_{j}, \tag{4.19}
\end{equation*}
$$

but since Λ must agree with λ on c, we have

$$
\begin{equation*}
\Lambda\left(e_{j}\right)=\lambda\left(e_{j}\right)=\lim _{n \rightarrow \infty}(\ldots, 0,1,0, \ldots)=0 \tag{4.20}
\end{equation*}
$$

which implies that we must have

$$
\begin{equation*}
\Lambda\left(e_{j}\right)=0=x_{j}=L_{x}\left(e_{j}\right) \quad \text { for all } j \in \mathbb{N} \tag{4.21}
\end{equation*}
$$

meaning that Λ must be the 0 function since this is true for all x and j. But clearly if we choose the constant sequence $y=\{k\}_{n=1}^{\infty} \in c$ for some non-zero $k \in \mathbb{C}$, then

$$
\begin{equation*}
\Lambda(y)=\lambda(y)=k \tag{4.22}
\end{equation*}
$$

so Λ cannot be the 0 function. Hence we arrive at a contradiction and so we conclude that Λ cannot be of the form L_{x} - that is, there are functionals $\Lambda \in \ell_{\infty}^{*}$ such that there is no $x \in \ell_{1}$ that gives us $\Phi(x)=L_{x}=\Lambda$. Therefore Φ is not surjective and so ℓ_{1} is not isomorphic to ℓ_{∞}.

Indeed, we proved in lectures that $\ell_{\infty}^{*} \cong c_{0}$. It is also worth noting that there is a useful theorem proved in Reed and Simon that says if X^{*} of a Banach space X is separable, then X is also separable. In question 2 we showed that ℓ_{1} is separable but ℓ_{∞} was not, which means that ℓ_{1} could not be the dual of ℓ_{∞}.

