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Liam Carroll - 830916
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Q1. Bi-infinite sequences and Sobolev space

Define z = {z,};°__ to be a bi-infinite sequence with z,, € C, indexed by Z. Let
s € R be given. We define a norm on x as

1/2
lzlln, == Y (C+n?)fe*] (1.1)
and the L?-based Sobolev space of order s as
hs ={x ={z,}02_ :||z|ln, < o0}. (1.2)

Part a)

We first show that hg is a normed linear space.

(i) |z||lp, =0 <= =0
Suppose for z € hy we have ||z

n. = 0. Then, taking squares we have

oo

Y ()l =0,

n=—oo

but clearly all terms (1 + n?)%|z,|*> > 0, and (1 + n?)* # 0 for any value of
n € Z or s € R, so we must have |z,|? = 0 for all n, so z = 0. The other
direction is obvious.

(i) ||ax|ln, = |a|||z||n, for all a € C
We calculate for o € C and x € h

1/2 1/2
[o¢] [o¢]

= 2 A+ Plaw ) =l Yo A+ ] =lalle

n=—oo n=—oo

|| he -

(1.3)



(iii) ||z +vy

he < ||2|ln, + |yl|n, for all z,y € hy
This bi-infinte business is clearly frustrating to work with - we like sequences

in N, not Z. So lets work with N instead.

We can formulate the natural bijection between Z and N by sending the posi-
tive integers to the even naturals, and the negative integers to the odd naturals.
That is, consider f : Z — N and f~! : N — Z defined by

2n n>0 k
— =, and fUE)=(-D*|Z]|. 1.4
o {_2n_1 SRR R RV I PR
It is clear f does indeed define a bijection. Then in setting k¥ = f(n) and
n = f~1(k) we can rewrite out sum of interest for z,y € h,

[e o]

lz+yllh, = Y (40l + vl

n=—oo
S

2
- k
- Z H <<_1)k kD |z g1 + Y109 |

k=0

oo k 2\ ¢
=> (1 + [5} ) |2 g1 + Y109 (1.5)
k=0

where we are permitted to rearrange these terms since x,y € hg gives us that
x4y € hs with elementary real analysis arguments, meaning x+y is absolutely
convergent. We can then assume the Minkowski inequality,

1/p 1/p 1/p

> ok + yel” ol I I T , (1.6)
k=0 k=0 k=0

to conclude that

1/2
lz+ylln, = | D (1+n°)|2n + yal
1/2
2 S
= <1+ [%/2] ) [ 5-100) + Y100
k=0
1/2 1/2
© 2\ 8/2 2 / ° 2\ §/2 2 /
< (1 [R/21°) 2y [ [+ TR21) v
k=0 k=0
1/2 1/2
= DY a+n?)wl |+ [ DD @)l
= [lz[ln, + l¥lln, - (1.7)

which proves the triangle inequality as desired.

Thus we conclude hg is a normed linear space. [



Part b)
The natural inner product ( ., . ) : hs X hy — C to define that induces the ||.

norm is, for x,y € h, "
o= 30 (42 T (1.9
This clearly induces the norm since
)= S (4 Faw= 3 (Uend) o = ol (19)
We can then prove th_is is a well defined inn;r product:
(i) (x+y,2) = (x,2) + (y, 2) for all z,y,z € h,
We have
(x+y,2)= i (1+n*)*(Zp + Un)2n
= i (1+ 1% (To + Tn) 2
= i (1 +n2)Tp2, + i (1 + 1) Yn2,
= Z;,_:)) +(y,2) . o (1.10)

(i) (z,z) >0and (z,z) =0 = x =0 for all = € h;

This is clear due to our identification of the norm in (1.9), hence we just
use these properties derived in part a.

(iii) (x,ay) = alz,y) for all z,y € hy and a € C

We calculate

(z, o) = Z (1+n?)° T ayn = @ Z (1+n?° 7, y = oz, y). (1.11)

(iv) (z,y) = (y,x) for all z,y € h

Noting that s € R, we have

o0 o0 o0

o)=Y (4n2p Praa= Y (402 Poan= Y (1+07)° Ty yn = (z,9).

n=—oo n=—oo n=—oo

(1.12)

Therefore our defined inner product is well defined, so (hs, ( ,)) is an inner product
space. [



Part c)

We now want to show that hy is complete in the .||, norm. We can do this by
identifying it with ¢ space. We will appeal to our rewritten summation formula in
(1.5) to write, for z € hy and f as defined in (1.4),

1/2 1/2

<1 + (’f/ﬂz)m Tp-1(k) 2

o0

= D Pl =)

n=—00 k=0

= . (1.13)

Since z € hy we know that ||z, is finite. This leads us to defining a map g : hy — £2
and g~ : (> — h, with

2\ 5/2 o
k=0
and >33 g }(F) = {(1 +n2)7s/2 :%f(n)} o (1.15)

Just as a sanity check to make sure we don’t get too bogged down in the notation
here, we note that

(57 0 9)@) = { A +n) A+ @D o] = s
(1.16)

and similarly for (g o g7')(#). This map is well defined since, with the standard
norm on £, we have

he = llg(@)l2 (1.17)

and since ||z||p,, is finite, then ||g(x)||2 is clearly finite as well - i.e. for any = € hy we
have g(x) € (2. Noting the bijection arguments from the triangle inequality proof in
part a), we can conclude that g is a bijection between h, and ¢2. We also note that
since ¢ is essentially just a rearrangement of terms, using the standard definitions
on sequence spaces, it is clear that ¢ is linear.

[z

In the first assignment, we proved that ¢ space is complete. Clearly then, if we
take a Cauchy sequence of elemenets X = {20}, where 210 = {z$} € h,,
then we know that there exists an element Y € ¢? such that

lim [|g(X ) — ¥, = 0. (118)
Jj—o00

Using the linearity of g and the fact that g7 (Y') € h, is well defined, we have

hs?

(1.19)

0= lim [g(X) = Yls = lim [lg(X) — g7} (Y))[l2 = lim [|XD —g7!(Y)
j—o0 j—o0 j—o0

which means we have found our candidate limit!

Therefore, we conclude that for a Cauchy sequence X of sequences in hg, there
exists a Y € (2, s0 a g~'(Y) € h, such that X™ converges to ¢g~'(Y) under the
||./|n, norm. In other words, (hs, ||.||n,) is a Banach space. [J




Q2. Separability of ¢’ space (and friends)

We first prove that (P is separable - that is, there exists a subset A C P such that
A is both countable and dense in /7.

We first claim that the set of finite sequences S is dense in /P where we define

for all i € Ny, x ) e C,
S =z = {.’Bgn)}fio if i <mn, xl(") = x;, : (2.1)
if i >n, 2" =0

To prove S C (P is dense, we need to show that any z € ¢ can be expressed as a
limit of a sequence in S. Let x € (7 with a: = {z;}$2, be given and consider the
sequence of elements X = {z(™}>°  where (™ € S. Given that x is in 7 we have
that ||z||, is finite which implies that  must converge to 0. Then

-~ 1/p - 1/p
: _ ) ) _ : |p —
Jim = = fim | 3=l fm 3 el | =0, 22

where the final equality is due to the fact that x converges to 0. Hence this shows
that S C (7 is dense. It remains to find a countably dense subset. Clearly, since
we are working with C = R?, we should investigate Q2 which is both countable and
dense in R2. That is, for any x(-n) € C we can find a sequence

21 —{Z(nl j= of{a(m oo T V— {bnl)}] °o, Where am) b(m €Q, (23)

such that xin can be approximated by this sequence. That is, by the density of Q
we have

lim [|z{"” — 2" ||c < lim (yRe(;cE")) —a"™| + [Im(z{") — b§"»i>|> =0. (24)
J—00 Jj—0o0

J

This shows that every element x ) of a sequence (™ € S can be well approximated
by sequences 2™ that is, (2.4) tells us

[ =20 < 3 ™ = 2 > 0. (25)

Putting all of this together, we see that if we define

2(") is finite as in S and,
A= { 2™ = {12 | 2D can be approximated by the rational (2.6)
sequence {zj(-"’l)};?‘;o for zj(."’l) € Q?

then we see that A is countable (sequences of Q* which is countable), and most
importantly A € (P is dense since, using (2.2) and (2.4) we have for any = € 7,
there exists a sequence z(™ = {z(™)1%2 ¢ A with

lz = 29, < fla = 2™l + |2 = 2, — 0. (2.7)

]



We then consider (cy, ||.]|), the space of sequences that converge to 0. But this can
be done using an identical argument as above and merely replacing the p-norm with
the sup-norm. Then finite sequences are still dense in ¢ since

lim ||z — 2n)||oe = lim sup |z —z™| =0, (2.8)

and we can still approximate each complex element by rationals that will also con-
verge in the sup-norm. Thus the argument is the same so ¢y is also separable. []

To show that (I°°)]|.||«) is not separable, we wish to show that every dense sub-
set of [*° is uncountable. We start by constructing a set of open balls in ¢*°. Let
I C N be an index set. We can construct a sequence e; € £* as

o o (1 itiel,
er ={e7}, where e} = {0 figl (2.9)

Consider then any other index set J # I C N and its corresponding sequence e .
Then we have

ler — eslloo = sup e} — €] = 1. (2.10)
ieN

We can then construct an open set U of open disjoint balls surrounding the point
€r,

U= {B(es,e = 1/2)|1 c N}, (2.11)

where disjointness follows from (2.10) (i.e. the closest sequence e; to ey is at least
1 away). We then see that Card(U) = Card(P(N)) and by Cantor’s theorem about

the cardinality of power sets, this shows that U is uncountable.

Let C C (* be a dense subset. By the definition of density, any neighbourhood
of a point x € ¢*° must contain a point y € C. That is, every open ball B € U
must contain a point y € C', but since these balls are disjoint, these points y must
be distinct. Therefore for any dense subset C' we must have

Card{y e C:ye Be U}) = Card(U), (2.12)

but U is uncountable from above, which proves that every dense subset of ¢* is
uncountable, which shows > is not separable. []



Q3. Isomorphism of quotient space to
orthogonal complement

Let X be a Hilbert space and let M C X be a closed subspace. We want to prove
that for the natural map,

7 X =>X/M={x+M:2ecX}
T [x]=x+ M, (3.1)

the restriction m|y1 : M+ — X/M is an isomorphism of M+ and X/M - that is, it
is a bijective isometry. We define

M+ ={zr € X :forallm € M, (m,z) = 0}, (3.2)
and for [z] € X/M,  |[[z]llxn = inf [lz+mx, (3:3)
where we note from lectures that the norm on X/M is well defined. We also know

that for a closed subspace M C X we can write X = M @ M+. From now on for
notational convenience, assume that 7 refers to the restricted map 7|1 .

(i) 7 is surjective
Let [y] € X/M be given. We want to show that there exists € M+ such
that m(x) = [y]. We first note that for the trivial case [y] = [0] we clearly have
0 € M+ and 7(0) = [0] is satisfied, so assume that [y] # [0]. Take an element
y+m € [y] form € M and y € X\M. We know that for any h € X we can

write h = hy, + hyso, which tells us that y € M+. Hence, for any [y] € X/M
we are guaranteed to have y € M~ such that 7(y) = [y], so 7 is surjective.

(i) 7 is injective
Let x,y € M+ be such that 7(x) = 7(y). Then [z] = [y], so [z — y] = [0], so
r—1y € M. But since z,y € M, this gives us for all m € M that
(m,z) =0 and (m,y) =0, so (m,z)— (m,y)=(m,x—y)=0, (34)

so we also have x —y € M~*. But since M N M+ = {0}, this implies z —y = 0
so clearly x = y and so 7 is injective.

(iii) 7 is an isometry
We want to show that m, which is clearly linear, is an isometry which is
equivalent to being norm-preserving due to that linearity. That is, for all

x € M+ C X we want to show ||z||x = || ()| x/m. Then we calculate, using
(xz,m) =0 for all m € M and inf,,cpr [[m||% = 0 since 0 € M,

2 . 2
%) Bgar = ind i+ mlf = inf (x -+ m. -+ m)
= n}LIGIRI ((z,z) + 2Re(z, m) + (m, m))
2 2 2
— el + inf mi% = ek

which shows the desired equality, hence 7 is an isometry.
Therefore m|y;1 induces the isomorphism M+ = X/M. [



Q4. Duals and not so duals

We first want to show that ¢; = (. Define

L,
0G=<L,: 0, —>C ’ | Lz|le: := sup [L2(w)le <00y, (4.1)
veernoy Yl

where we define the map

bl — 0]
x=A{x,}0 — L, : {1 — C where

Lo(y) = Tt (4.2)

Then we note that & is conjugate-linear due to the linearity of L., that is, for
x,2 €Ly and a € C,

Or+2)=Ly,=L,+L,=(x)+ P(2), (4.3)
and @(ax) = Lo, = al, = ad(x). (4.4)

We will first show that ® is an isometry. Firstly, note that ||®(x)||¢ is bounded
above since Hoélder’s inequality tells us for x € o, and y € {4,

IL:W)lle = > Faya| <D 1Tyl = lzylls < lzllollyll - (4.5)
n=1 n=1
which shows that
1 L2(y)lc
[2(@)[le; = | Lalley = sup ——7— < |[7]|e, (4.6)
veernfoy Iyl

which tells us that ® is a bounded linear map since we at least have ||[®]] < 1. We
now want to show that ||®(x)||, is also bounded below by ||z]|o - which reduces to
attempting to show that for all y € ¢; we have

L2 (y)le
1yllx

(@)l = > [|#]loo -

Without loss of generality assume x # 0. We can then define the sequence
y = (zn/|zn|)e; for some j € N, where e; is the standard basis vector with a 1 in
the j position and 0 everywhere else (and also assume that x; # 0). Then we have

n

Tn
lyll = TG = L, (4.7)
n=1 n
which then gives us
o0 o xn
ILe(W)llc = anmej = |zy| . (4.8)
n=1 n




Using these two facts we have

1L ()l _ |l
= Sl gy, (4.9)
Iyl L

but since this must be true for all ;7 € N, we conclude that

1®()

@) lle; =

g = sup |z = [z - (4.10)
jeN

Combining this with (4.6) gives us the desired isometry, namely for all z € /.,

|®()

o= 2]l (4.11)

We now aim to show surjectivity, that is, for any A € ¢}, there exists a x € ¢, such
that L, = A, that is, L,(y) = A(y) for all y € ¢;. Let A € ¢} be fixed. Consider the
sequence e; € {1 defined in the standard way. Then to get the desired equality, we
have

L.(e;) = Zx_nei =7; soweneed M) =1, (4.12)

n=1

which leads us to define our sequence

z={Aen))}2, - (4.13)
We then check that z € /. For any : € N we have
[Aea)| < [[Allfleills = lIA]l < oo (4.14)

which we know is finite since \ is in the dual space, i.e. is a bounded linear operator.
This tells us that for all n € N we have

zn] < A s0 - [[2]loe = Slelg|f€n| <Al < o0, (4.15)

so we have x € (. To conclude that L,(y) = A(y) for all y € ¢;, we note that both
L, and A are both linear, and with any finite sequence y € S defined in (2.1), we
have

Li(y) = Lo(y1e1 + -+ + ynen)
=uyi1L,(e1) + -+ ynLa(en)
=yiA(e1) + -+ ynA(en)
=Ay), (4.16)

but since the set of finite sequences is dense in ¢, and L, and A agree on a dense
subset from the above calculation, we conclude that L,(y) = A(y) for all y € ¢; and
so @ is surjective.

Injectivity is clear since if L,(z) = L,(z) for all z € ¢; then

ix_nzi = i%zi SO i(mn —Yn)zi =0 sox=y. (4.17)
n=1 n=1 n=1

Therefore, ® induces the isomorphism of Banach spaces ¢, = (7. [



To show that £% 2 ¢,, we will show that in this case ® : {; — £ is not surjective
by appealing to the Hahn-Banach theorem. That is, there exist functionals A € %
that are not of the form L..

Consider the subspace ¢ C ¢, of convergent sequences. Then consider A € c*

defined as

Az) = lim z,, where |A(z)| =] lim x,| <sup|z,| = |||, (4.18)

where we know that ||z exists since z is convergent. So we see that A is a well
defined bounded linear functional, hence is in ¢*. By the Hahn-Banach theorem,
this means we can find an extension A € £ extending A to ¢ and satisfying
|Alles. = || Al|ex. Suppose A was of the form L, for x € ¢;. Then for e; € ¢ we would
have

L,(e;) = Z Tpe; = T, (4.19)
n=1

but since A must agree with A on ¢, we have

Alej) = Ae;) = lim (...,0,1,0,...) =0, (4.20)

n—oo

which implies that we must have
Ae;) =0=2;=L,(e;) foralljeN, (4.21)

meaning that A must be the 0 function since this is true for all x and j. But clearly
if we choose the constant sequence y = {k}>2, € ¢ for some non-zero k € C, then

Aly) = \My) =k, (4.22)

so A cannot be the 0 function. Hence we arrive at a contradiction and so we con-
clude that A cannot be of the form L, - that is, there are functionals A € £ such
that there is no x € ¢; that gives us ®(x) = L, = A. Therefore ® is not surjective
and so f; is not isomorphic to /.. [

Indeed, we proved in lectures that ¢; = c¢y. It is also worth noting that there
is a useful theorem proved in Reed and Simon that says if X* of a Banach space X
is separable, then X is also separable. In question 2 we showed that ¢ is separable
but /., was not, which means that ¢; could not be the dual of /..
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