Functional Analysis Assignment 1

Liam Carroll - 830916
Due Date: 2nd April 2020

Q1. Metric on space of Cauchy Sequences

Part a)

Let (X, d) be a metric space and define

$$
\begin{gathered}
X^{\prime}:=\left\{\text { Cauchy sequences }\left\{x_{n}\right\}_{n=1}^{\infty} \text { in }(X, d)\right\} \\
d^{\prime}: X^{\prime} \rightarrow \mathbb{R}, d^{\prime}\left(\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty}\right):=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)
\end{gathered}
$$

We claim that d^{\prime} is not a metric on X^{\prime}. We will show that for $x, y \in X^{\prime}$, with $x=\left\{x_{n}\right\}_{n=1}^{\infty}$ and $y=\left\{y_{n}\right\}_{n=1}^{\infty}$, that $d^{\prime}(x, y)=0 \nRightarrow x=y$.

Consider the the metric space (X, d) with $X=\mathbb{R}$ and $d(a, b)=|a-b|$. Suppose $x_{n}=e^{-n}$ and $y_{n}=-e^{-n}$, which are both clearly convergent, hence Cauchy sequences, so $x, y \in X^{\prime}$. Then

$$
\begin{aligned}
d^{\prime}(x, y) & =\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left|e^{-n}-\left(-e^{-n}\right)\right| \\
& =\lim _{n \rightarrow \infty}\left|2 e^{-n}\right| \\
& =0
\end{aligned}
$$

However, clearly we see that $x \neq y$ as sequences. Thus, $d^{\prime}(x, y)=0 \nRightarrow x=y$ and so we conclude that d^{\prime} is not a metric on X^{\prime} as claimed.

Part b)

Let $\tilde{X}=X^{\prime} / \sim$, where \sim is the equivalence relation $\left\{x_{n}\right\}_{n=1}^{\infty} \sim\left\{y_{n}\right\}_{n=1}^{\infty}$ if and only if $d\left(x_{n}, y_{n}\right) \rightarrow 0$. Let $\tilde{d}: \tilde{X} \rightarrow \mathbb{R}$ be defined as $\tilde{d}\left(\left[\left\{x_{n}\right\}_{n=1}^{\infty}\right],\left[\left\{y_{n}\right\}_{n=1}^{\infty}\right]\right)=d^{\prime}\left(\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty}\right)$. We will first show that \tilde{d} is a metric function, and then show that it is well defined.

\underline{d} is a metric function

Let $x, y, z \in \tilde{X}$ be defined as in part a). Most properties of \tilde{d} are derived from the fact that we inherit the well defined metric function d on X.
(i) $\tilde{d}([x],[y]) \geq 0$

Since $d\left(x_{n}, y_{n}\right) \geq 0$, clearly $\tilde{d}([x],[y])=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \geq 0$.
(ii) $\tilde{d}([x],[y])=0 \Longleftrightarrow[x]=[y]$
(a) \Longrightarrow Assume $\tilde{d}([x],[y])=0$. Then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. By definition, this means $[x]=[y]$.
$(\mathrm{b}) \Longleftarrow$ Assume $[x]=[y]$. Then $\tilde{d}([x],[y])=\tilde{d}([x],[x])=\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}\right)=0$ since d is a well defined metric.
(iii) $\tilde{d}([x],[y])=\tilde{d}([y],[x])$

$$
\tilde{d}([x],[y])=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} d\left(y_{n}, x_{n}\right)=\tilde{d}([y],[x])
$$

(iv) $\tilde{d}([x],[z]) \leq \tilde{d}([x],[y])+\tilde{d}([y],[z])$

$$
\begin{aligned}
\tilde{d}([x],[z]) & =\lim _{n \rightarrow \infty}\left(d\left(x_{n}, z_{n}\right)\right) \\
& \leq \lim _{n \rightarrow \infty}\left(d\left(x_{n}, y_{n}\right)+d\left(y_{n}, z_{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)+\lim _{n \rightarrow \infty} d\left(y_{n}, z_{n}\right) \\
& =\tilde{d}([x],[y])+\tilde{d}([y],[z])
\end{aligned}
$$

Hence we have shown that \tilde{d} satisfies the necessary properties of a metric.

$\underline{\tilde{d} \text { is well defined }}$

(i) $([x],[y]) \in \tilde{X} \times \tilde{X} \Longrightarrow \tilde{d}([x],[y]) \in \mathbb{R}$

Take $([x],[y]) \in \tilde{X} \times \tilde{X}$. Since $d\left(x_{n}, y_{n}\right) \in \mathbb{R}$ we see that $\tilde{d}([x],[y])=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \in \mathbb{R}$ since \mathbb{R} is complete.
(ii) $\left(\left[x_{1}\right],\left[y_{1}\right]\right)=\left(\left[x_{2}\right],\left[y_{2}\right]\right) \Longrightarrow \tilde{d}\left(\left[x_{1}\right],\left[y_{1}\right]\right)=\tilde{d}\left(\left[x_{2}\right],\left[y_{2}\right]\right)$

Suppose $\left(\left[x_{1}\right],\left[y_{1}\right]\right)=\left(\left[x_{2}\right],\left[y_{2}\right]\right)$. Then

$$
\begin{aligned}
\tilde{d}\left(\left[x_{1}\right],\left[y_{1}\right]\right) & =\lim _{n \rightarrow \infty} d\left(\left(x_{1}\right)_{n},\left(y_{1}\right)_{n}\right) \\
& =\lim _{n \rightarrow \infty} d\left(\left(x_{2}\right)_{n},\left(y_{2}\right)_{n}\right) \\
& =\tilde{d}\left(\left[x_{2}\right],\left[y_{2}\right]\right)
\end{aligned}
$$

since d is a well defined metric.
Hence we conclude that \tilde{d} is a well defined metric function on \tilde{X} as required.

Q2. Unit ball in Hölder space

For $\alpha \in(0,1)$, the Hölder space of order α is denoted $C^{\alpha}[a, b]$, where

$$
f \in C^{\alpha}[a, b] \Longleftrightarrow\|f\|_{C^{\alpha}}=\sup _{x \in[a, b]}|f(x)|+\sup _{x, y \in[a, b]} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty
$$

We then define the unit ball (open or closed does not matter - we choose closed) around 0 in $C^{\alpha}[a, b]$

$$
B(0 ; 1)=\left\{f \in C^{\alpha}[a, b]:\|f\|_{C^{\alpha}} \leq 1\right\}
$$

To show that $B(0 ; 1)$ is a pre-compact subset of $C^{0}[a, b]$, we can appeal to the ArzelaAscoli theorem that says if \mathcal{F} is a uniformly bounded and uniformly equicontinuous subset of $C^{0}[a, b]$, then \mathcal{F} is pre-compact. By definition we have $B(0 ; 1) \subset C^{\alpha}[a, b] \subset C^{0}[a, b]$.
$B(0 ; 1)$ is uniformly bounded if $\exists C>0$ such that $\forall f \in B(0 ; 1)\|f\|_{C^{\alpha}} \leq C$. This is clear since by definition if $f \in B(0 ; 1) \Longrightarrow\|f\|_{C^{\alpha}} \leq 1$, so clearly $C=1$ is suitable. Note that C is independent of f, causing the uniformity. Also, every f is also uniformly bounded with respect to the sup-norm since $\|f\|_{\alpha} \leq 1 \Longrightarrow$ $\sup _{x \in[a, b]}|f(x)| \leq 1 \Longrightarrow|f(x)| \leq 1$ for all $x \in[a, b]$.
$B(0 ; 1)$ is uniformly equi-continuous if

$$
\forall \varepsilon>0 \exists \delta>0 \text { s.t. }|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\varepsilon
$$

where δ is independent of $x, y \in[a, b]$ and $f \in B(0 ; 1)$. Let ε be fixed. Then $\forall f \in B(0 ; 1)$ we have

$$
\begin{aligned}
& \|f\|_{C^{\alpha}}=\sup _{x \in[a, b]}|f(x)|+\sup _{x, y \in[a, b]} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \leq 1 \\
& \Longrightarrow \sup _{x, y \in[a, b]} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \leq 1-\sup _{x \in[a, b]}|f(x)| \leq 1 \\
& \Longrightarrow \forall x, y \in[a, b] \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \leq 1 \\
& \Longrightarrow|f(x)-f(y)| \leq|x-y|^{\alpha}
\end{aligned}
$$

So if we choose $\delta=\varepsilon^{1 / \alpha}$ (where α is fixed), then

$$
|x-y|<\delta=\varepsilon^{1 / \alpha} \Longrightarrow|f(x)-f(y)| \leq|x-y|^{\alpha}<\left(\varepsilon^{1 / \alpha}\right)^{\alpha}=\varepsilon
$$

where we used the fact that (. $)^{\alpha}$ is monotonically increasing for $0<\alpha<1$.
Since $\delta=\varepsilon^{1 / \alpha}$ is independent of $x, y \in[a, b]$ and $f \in B(0 ; 1)$, then we determine that $B(0 ; 1)$ is uniformly equi-continuous.

Thus, by the Arzela-Ascoli Theorem, we see that $B(0 ; 1)$ is a pre-compact subset of $C^{0}[a, b]$.

Q3. Inner Product Spaces

Part a)

Let $(V,(\cdot, \cdot))$ be an inner product space, $x, y \in V$. Define $\|x\|^{2}=(x, x)$. Then

$$
\begin{aligned}
\|x+y\|^{2}-\|x-y\|^{2}= & (x+y, x+y)-(x-y, x-y) \\
= & (x, x)+(x, y)+(y, x)+(y, y) \\
& -[(x, x)+(x,-y)+(-y, x)+(-y,-y)] \\
= & (x, y)+\overline{(x, y)}-[-(x, y)-(y, x)] \\
= & 2(x, y)+2 \overline{(x, y)} \\
= & 4 \operatorname{Re}(x, y)
\end{aligned}
$$

Where we appealed to the fact that $(-x, y)=(x,-y)=-(x, y)$ and $(y, x)=\overline{(x, y)}$. Also, $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$. Similarly,

$$
\begin{aligned}
\|x+i y\|^{2}-\|x-i y\|^{2}= & (x+i y, x+i y)-(x-i y, x-i y) \\
= & (x, x)+(x, i y)+(i y, x)+(y, y) \\
& -[(x, x)+(x,-i y)+(-i y, x)+(-i y,-i y)] \\
= & i(x, y)-i \overline{(x, y)}-[-i(x, y)+i \overline{(x, y)}] \\
= & 2 i(x, y)-2 \overline{\overline{(x, y)}} \\
= & 4 i \operatorname{Im}(x, y)
\end{aligned}
$$

Where we appealed to the fact that $(x, i y)=(-i x, y)=i(x, y)$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$. Hence,

$$
\begin{aligned}
\frac{1}{4}\left(\left(\|x+y\|^{2}-\|x-y\|^{2}\right)-i\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)\right) & =\frac{1}{4}(4 \operatorname{Re}(x, y)+4 \operatorname{Im}(x, y)) \\
& =(x, y)
\end{aligned}
$$

This proves the polarisation identity holds for a given inner product space V.

Part b)

Let $(V,\|\|$.$) be a normed linear space (NLS). A NLS satisfies the parallelogram law$ if it obeys the following identity $\forall x, y \in V$

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|x\|^{2}
$$

(i) Inner product space \Longrightarrow parallelogram law

Suppose V is also an inner product space (IPS) with the inner product defined in the standard way. Then we have

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =(x+y, x+y)+(x-y, x-y) \\
= & (x, x)+(x, y)+(y, x)+(y, y) \\
& +(x, x)-(x, y)-(y, x)+(-y,-y) \\
& =2(x, x)+2(y, y) \\
= & 2\|x\|^{2}+2\|y\|^{2}
\end{aligned}
$$

and so the IPS V obeys the parallelogram law as required.

(ii) NLS with parallelogram law \Longrightarrow IPS

Now suppose that V satisfies the parallelogram law. We wish to show that the inner product defined by the polarisation identity is indeed a well defined inner product satisfying all of the necessary conditions.

Let $x, y, z \in V$ and $\alpha \in \mathbb{C}$.
(i) $(x, y)=\overline{(y, x)}$

$$
\begin{aligned}
\overline{(y, x)} & =\overline{\frac{1}{4}\left(\left(\|y+x\|^{2}-\|y-x\|^{2}\right)-i\left(\|y+i x\|^{2}-\|y-i x\|^{2}\right)\right)} \\
& =\frac{1}{4}\left(\left(\|x+y\|^{2}-\|x-y\|^{2}\right)-i\left(\|y-i x\|^{2}-\|y+i x\|^{2}\right)\right) \\
& =\frac{1}{4}\left(\left(\|x+y\|^{2}-\|x-y\|^{2}\right)-i\left(|i|\|y-i x\|^{2}-|-i|\|y+i x\|^{2}\right)\right) \\
& =\frac{1}{4}\left(\left(\|x+y\|^{2}-\|x-y\|^{2}\right)-i\left(\|(i)(y-i x)\|^{2}-\|(-i)(y+i x)\|^{2}\right)\right) \\
& =\frac{1}{4}\left(\left(\|x+y\|^{2}-\|x-y\|^{2}\right)-i\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)\right) \\
& =(x, y)
\end{aligned}
$$

Where we used the fact that $|-i|=|i|=1$ and $|\alpha|^{2}\|x\|^{2}=\|\alpha x\|^{2}$.
(ii) $(x, x) \geq 0$ and $(x, x)=0 \Longrightarrow x=0$

$$
\begin{aligned}
(x, x) & =\frac{1}{4}\left(\left(\|x+x\|^{2}-\|x-x\|^{2}\right)-i\left(\|x+i x\|^{2}-\|x-i x\|^{2}\right)\right) \\
& =\frac{1}{4}\left(4\|x\|^{2}-i\left(|1+i|^{2}\|x\|^{2}-|1-i|^{2}\|x\|^{2}\right)\right) \\
& =\frac{1}{4}\left(4\|x\|^{2}-i\left(2\|x\|^{2}-2\|x\|^{2}\right)\right) \\
& =\|x\|^{2} \geq 0
\end{aligned}
$$

Where the last line is clear from properties of a norm.
Now assume that $(x, x)=0$. Since $(x, x)=\|x\|^{2}$ as shown above, this implies that $\|x\|^{2}=0$ but since $\|$.$\| is a norm, this is only true when$ $x=0$. Hence $(x, x)=0 \Longrightarrow x=0$.
(iii) $(x, i y)=i(x, y)$ (sub-property - full property discussed later)

$$
\begin{aligned}
(x, i y) & =\frac{1}{4}\left(\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)-i\left(\|x+i(i y)\|^{2}-\|x-i(i y)\|^{2}\right)\right) \\
& \left.=\frac{1}{4}\left(i\left(\|x+y\|^{2}-\| x-y\right) \|^{2}\right)+\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)\right) \\
& \left.=(i) \frac{1}{4}\left(\left(\|x+y\|^{2}-\| x-y\right) \|^{2}\right)-i\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)\right) \\
& =i(x, y)
\end{aligned}
$$

(iv) $(x+y, z)=(x, z)+(y, z)$

We first look at $(x+y, z)$ to see what objects we are interested in studying.

$$
\begin{aligned}
(x+y, z)= & \frac{1}{4}\left(\left(\|(x+y)+z\|^{2}-\|(x+y)-z\|^{2}\right)\right. \\
& -i\left(\|(x+y)+i z\|^{2}-\|(x+y)-i z\|^{2}\right)
\end{aligned}
$$

Using the parallelogram law, we see

$$
\begin{align*}
& \|(x+z)+y\|^{2}=2\|x+z\|^{2}+2\|y\|^{2}-\|x+z-y\|^{2} \tag{3.1}\\
& \|(y+z)+x\|^{2}=2\|y+z\|^{2}+2\|x\|^{2}-\|y+z-x\|^{2} \tag{3.2}
\end{align*}
$$

Rearranging, we see that

$$
\begin{aligned}
\Longrightarrow\|x+y+z\|^{2}= & \frac{1}{2}\left[\left(2\|x+z\|^{2}+2\|y\|^{2}-\|x+z-y\|^{2}\right)\right. \\
& \left.+\left(2\|y+z\|^{2}+2\|x\|^{2}-\|y+z-x\|^{2}\right)\right] \\
= & \|x\|^{2}+\|y\|^{2}+\|x+z\|^{2}+\|y+z\|^{2} \\
& -\frac{1}{2}\|x+z-y\|^{2}-\frac{1}{2}\|y+z-x\|^{2}
\end{aligned}
$$

We can then make the substitution sending $z \mapsto-z$ to get the following

$$
\begin{aligned}
\|x+y-z\|^{2}= & \|x\|^{2}+\|y\|^{2}+\|x-z\|^{2}+\|y-z\|^{2} \\
& -\frac{1}{2}\|x-y-z\|^{2}-\frac{1}{2}\|y-x-z\|^{2} \\
= & \|x\|^{2}+\|y\|^{2}+\|x-z\|^{2}+\|y-z\|^{2} \\
& -\frac{1}{2}\|-(x-y-z)\|^{2}-\frac{1}{2}\|-(y-x-z)\|^{2} \\
= & \|x\|^{2}+\|y\|^{2}+\|x-z\|^{2}+\|y-z\|^{2} \\
& -\frac{1}{2}\|y+z-x\|^{2}-\frac{1}{2}\|x+z-y\|^{2}
\end{aligned}
$$

Comparing terms, we get

$$
\begin{aligned}
\operatorname{Re}(x+y, z) & =\frac{1}{4}\left(\|x+y+z\|^{2}-\|x+y-z\|^{2}\right) \\
& =\frac{1}{4}\left(\left(\|x+z\|^{2}-\|x-z\|^{2}\right)+\left(\|y+z\|^{2}-\|y-z\|^{2}\right)\right) \\
& =\operatorname{Re}(x, z)+\operatorname{Re}(y, z)
\end{aligned}
$$

Similarly for the imaginary part, and sending $z \mapsto i z$ in our previous identities,

$$
\begin{aligned}
\operatorname{Im}(x+y, z) & =-\frac{1}{4}\left(\|x+y+i z\|^{2}-\|x+y-i z\|^{2}\right) \\
& =-\frac{1}{4}\left(\left(\|x+i z\|^{2}-\|x-i z\|^{2}\right)+\left(\|y+i z\|^{2}-\|y-i z\|^{2}\right)\right) \\
& =-\operatorname{Re}(x, i z)-\operatorname{Re}(y, i z) \\
& =-\operatorname{Re}(i(x, z))-\operatorname{Re}(i(y, z)) \\
& =\operatorname{Im}(x, z)+\operatorname{Im}(y, z)
\end{aligned}
$$

Hence, since $\operatorname{Re}(x+y, z)=\operatorname{Re}(x, z)+\operatorname{Re}(y, z)$ and $\operatorname{Im}(x+y, z)=$ $\operatorname{Im}(x, z)+\operatorname{Im}(y, z)$, by the uniqueness of complex numbers we conclude that $(x+y, z)=(x, z)+(y, z)$ as required. We also notice linearity in the second term

$$
(x, y+z)=\overline{(y+z, x)}=\overline{(y, x)+(z, x)}=\overline{(y, x)}+\overline{(z, x)}=(x, y)+(x, z)
$$

(v) $(x, \alpha y)=\alpha(x, y)$

We have already shown this is the case for $(x, i y)=i(x, y)$. It is trivial to show that $(x,-y)=-(x, y)$ and that $(x, 0)=0$. By induction, from the linearity of property iv), we can show that for $n \in \mathbb{N}$, $(x, n y)=(x, y)+\cdots+(x, y)=n(x, y)$. Combining this with the aforementioned properties, we get that for $n \in \mathbb{Z}$ we have $(x, n y)=n(x, y)$. We now want to consider the case of $\beta \in \mathbb{Q}$. Consider $\beta=m / n \in \mathbb{Q}$ for $m, n \in \mathbb{Z}(n \neq 0)$. Then we see, using the properties for $m, n \in \mathbb{Z}$ as mentioned above,

$$
\begin{aligned}
\frac{1}{\beta}(x, \beta y)=\frac{n}{m}\left(x, \frac{m}{n} y\right) & =\frac{n m}{m}\left(x, \frac{1}{n} y\right)=n\left(x, \frac{1}{n} y\right)=\left(x, n \frac{1}{n} y\right)=(x, y) \\
& \Longrightarrow(x, \beta y)=\beta(x, y)
\end{aligned}
$$

Which shows that the property holds for $\beta \in \mathbb{Q}$. To extend this result to \mathbb{R}, we define $\phi: \mathbb{R} \rightarrow \mathbb{C}, \quad \phi(\alpha)=(x, \alpha y)$ and $\psi: \mathbb{R} \rightarrow \mathbb{C}, \quad \psi(\alpha)=\alpha(x, y)$. Both ϕ and ψ are continuous functions due to the continuity of the norm that induces the inner product. We showed above that $\left.\phi\right|_{\mathbb{Q}}=\left.\psi\right|_{\mathbb{Q}}$, and then we can use the fact that if two continuous functions agree on a dense subset of their preimage (i.e. $\mathbb{Q} \subset \mathbb{R}$) then they agree everywhere. Thus, we have $\phi=\psi$. Extending this to \mathbb{C} with the property $(x, i y)=i(x, y)$ and linearity in the second term, we see that $(x, \alpha y)=\alpha(x, y) \forall \alpha \in \mathbb{C}$ as required.

Thus, since (x, y) induced by $\|$.$\| with the parallelogram law obeys all necessary$ conditions for an inner product, we conclude that a normed linear space is an inner product space if and only if the norm satisfies the parallelogram law.

Part c)

Let $\left(C^{0}[a, b],\|\cdot\|_{\infty}\right)$ be the normed linear space of continuous functions, where for $f \in C^{0}[a, b]$ we define $\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)|$. We will show by use of a counterexample that this norm does not obey the parallelogram law for specific f and g.

Let $f, g \in C^{0}[a, b]$ be defined as $f(x)=x$ and $g(x)=1-x$ on the interval $[0,1]$. Then

$$
\begin{aligned}
\|f+g\|_{\infty}^{2}+\|f-g\|_{\infty}^{2} & =\left(\max _{x \in[0,1]}|f(x)+g(x)|\right)^{2}+\left(\max _{x \in[0,1]}|f(x)-g(x)|\right)^{2} \\
& =\left(\max _{x \in[0,1]}|1|\right)^{2}+\left(\max _{x \in[0,1]}|1-2 x|\right)^{2} \\
& =1^{2}+1^{2}=2
\end{aligned}
$$

But,

$$
\begin{aligned}
2\|f\|_{\infty}^{2}+2\|g\|_{\infty}^{2} & =2\left(\max _{x \in[0,1]}|f(x)|\right)^{2}+2\left(\max _{x \in[0,1]}|g(x)|\right)^{2} \\
& =2\left(\max _{x \in[0,1]}|x|\right)^{2}+2\left(\max _{x \in[0,1]}|1-x|\right)^{2} \\
& =2\left(1^{2}\right)+2\left(1^{2}\right)=4
\end{aligned}
$$

Hence, we observe that $\|f+g\|_{\infty}^{2}+\|f-g\|_{\infty}^{2} \neq 2\|f\|_{\infty}^{2}+2\|g\|_{\infty}^{2}$ and so the parallelogram law does not hold for this case. Therefore, using part b), we deduce that $\left(C^{0}[a, b],\|\cdot\|_{\infty}\right)$ is not an inner product space.

Q4. Closed subspaces of $C^{0}[a, b]$ are not as nice

We have proven that for a Hilbert space \mathcal{H} with $\mathcal{M} \subset \mathcal{H}$ a closed subspace, then $\forall v \in \mathcal{H}$ there is a unique $w \in \mathcal{M}$ satisfying $\|w-v\|=\inf _{w^{\prime} \in \mathcal{M}}\left\|w^{\prime}-v\right\|$. We will construct a counter example for the normed linear space $\left(C^{0}[a, b],\|\cdot\|_{\infty}\right)$. Without loss of generality, assume the interval $[a, b]$ is $[0,1]$ for ease.

Consider the subspace $\mathcal{X} \subset C^{0}[0,1]$ defined by:

$$
\mathcal{X}:=\left\{g \in C^{0}[0,1]: g(0)=0\right\}
$$

The fact that \mathcal{X} is a subspace is clear - the fact that it is closed in the topological sense deserves some attention. Consider the functional $T: C^{0}[0,1] \rightarrow \mathbb{R}$ defined by $T(g)=g(0)$. It is clear that T is a linear functional. We also see that T is bounded since $|T(g)|=|g(0)| \leq\|g\|_{\infty}$ (since $\|g\|_{\infty}$ is finite $\forall g \in C^{0}[a, b]$). Hence, by the lemma in class, this implies that T is a continuous linear functional. We know that under continuous functions, the pre-image of a closed subset is closed. Hence, $T^{-1}(\{0\})=\mathcal{X}$ is closed in the topological sense. Thus $\mathcal{X}^{0}[0,1]$ is a closed subspace.

Now consider the function $f \in C^{0}[0,1]$ with $f(x)=1$. We will show that there are multiple $g \in \mathcal{X}$ that infimise the distance to f. We see that since $f(0)=1$ and $(\forall g \in \mathcal{X}) g(0)=0$, we have $|g(0)-f(0)|=|0-1|=1$. This tells us that

$$
\inf _{g^{\prime} \in \mathcal{X}}\left\|g^{\prime}-f\right\|_{\infty}=\inf _{g^{\prime} \in \mathcal{X}}\left(\max _{x \in[0,1]}\left|g^{\prime}(x)-f(x)\right|\right) \geq 1
$$

Consider the functions $g_{1}, g_{2} \in \mathcal{X}$ defined by $g_{1}(x)=x$ and $g_{2}(x)=2 x$. Then

$$
\begin{aligned}
& \left\|g_{1}-f\right\|_{\infty}=\max _{x \in[0,1]}|x-1|=1 \\
& \left\|g_{2}-f\right\|_{\infty}=\max _{x \in[0,1]}|2 x-1|=1
\end{aligned}
$$

Since we have shown that $\inf _{g^{\prime} \in \mathcal{X}}\left\|g^{\prime}-f\right\|_{\infty} \geq 1$, and we have found two distinct $g_{1}, g_{2} \in \mathcal{X}$ that both infimise the distance to the function $f \in C^{0}[0,1]$, we conclude that $\left(C^{0}[a, b],\|\cdot\|_{\infty}\right)$ does not have this same 'unique closest element' property that we observed for a closed subspace of \mathcal{H}.

Q5. ℓ^{p} space is Banach

Let $\left(\ell^{p},\|.\|_{p}\right.$) (with $1<p \leq \infty$) denote the normed linear space of sequences that converge with respect to the p-norm, that is, for a sequence of complex numbers $x=\left\{x_{i}\right\}_{i=1}^{\infty} \in \ell^{p}$, define

$$
\|x\|_{p}:=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}, 1<p<\infty, \quad\|x\|_{\infty}:=\sup _{i \in \mathbb{N}}\left|x_{i}\right|
$$

The fact that both of these definitions define a normed linear space is trivial given that we may use, without proof, the Minkowski inequality to verify the triangle inequality (i.e. $\forall x, y \in \ell^{p},\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$). Proving completeness is clearly non-trivial, so we divide into the two separate cases. By definition, ℓ^{p} is complete if $\exists X \in \ell^{p}$ s.t $\lim _{n \rightarrow \infty}\left\|X^{(n)}-X\right\|_{p}=0$.
$1<\mathrm{p}<\infty$
Consider a sequence of elements in ℓ^{p} denoted by $X^{(n)}=\left\{x^{(n)}\right\}_{n=1}^{\infty}$ where $x^{(n)}=\left\{x_{i}^{(n)}\right\}_{i=1}^{\infty} \in \ell^{p}$. Let $X^{(n)}$ be a Cauchy sequence - that is,

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \text { s.t. } \quad \forall n, m \geq N \quad d_{p}\left(X^{(n)}, X^{(m)}\right)<\varepsilon
$$

where we define

$$
d_{p}\left(X^{(n)}, X^{(m)}\right)=\left\|X^{(n)}-X^{(m)}\right\|_{p}=\left(\sum_{i=1}^{\infty}\left|x_{i}^{(n)}-x_{i}^{(m)}\right|^{p}\right)^{1 / p}
$$

We wish to show that the sequence $X=\left\{x_{i}\right\}_{i=1}^{\infty}$ is an element of ℓ^{p} (i.e. $\|X\|_{p}$ is finite) and that $\lim _{n \rightarrow \infty}\left\|X^{(n)}-X\right\|_{p}=0$. Clearly, the natural choice for X is $X=\left\{\lim _{n \rightarrow \infty} x_{i}^{(n)}\right\}_{i=1}^{\infty}$.

We first notice that for a fixed $j \in \mathbb{N}$, the sequence $X_{j}^{(n)}=\left\{x_{j}^{(n)}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ is Cauchy since $\forall n, m \geq N$

$$
\left\|X_{j}^{(n)}-X_{j}^{(m)}\right\|_{\mathbb{R}}^{p}=\left|x_{j}^{(n)}-x_{j}^{(m)}\right|^{p} \leq \sum_{j=1}^{\infty}\left|x_{j}^{(n)}-x_{j}^{(m)}\right|^{p}=\left\|X^{(n)}-X^{(m)}\right\|_{p}^{p}<\varepsilon^{p}
$$

We can then use the fact that for fixed $j, n \in \mathbb{N}$ we have $x_{j}^{(n)} \in \mathbb{C}$. Since \mathbb{C} is complete, we see that our Cauchy sequence $X_{j}^{(n)}$ must converge to an element $x_{j} \in \mathbb{C}$. Define this as $\lim _{n \rightarrow \infty} X_{j}^{(n)}=x_{j}$.

For the finite sum with a fixed $K \in \mathbb{N}$, we have $\forall m, n \geq N$ that

$$
\sum_{j=1}^{K}\left|x_{j}^{(n)}-x_{j}^{(m)}\right|^{p} \leq \sum_{j=1}^{\infty}\left|x_{j}^{(n)}-x_{j}^{(m)}\right|^{p}=\left\|X^{(n)}-X^{(m)}\right\|_{p}^{p}<\varepsilon^{p}
$$

Since we are now dealing with a finite sum and $|$.$| is a continuous function, and using$ basic properties of limits on inequalities (i.e. if $\forall n a_{n}<b_{n} \Longrightarrow \lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$), we see that $\forall n>N$ we can move the limit inside the sum as follows

$$
\begin{gather*}
\lim _{m \rightarrow \infty} \sum_{j=1}^{K}\left|x_{j}^{(n)}-x_{j}^{(m)}\right|^{p} \leq \lim _{m \rightarrow \infty} \varepsilon^{p} \\
\Longrightarrow \sum_{j=1}^{K}\left|x_{j}^{(n)}-\lim _{m \rightarrow \infty} x_{j}^{(m)}\right|^{p} \leq \varepsilon^{p} \\
\Longrightarrow \sum_{j=1}^{K}\left|x_{j}^{(n)}-x_{j}\right|^{p} \leq \varepsilon^{p} \tag{5.1}
\end{gather*}
$$

We now appeal to the Minkowski inequality. Though this statement is relevant for an infinite sum, we may regard our finite sum over $j=1, \ldots, K$ as being an infinite sum over a sequence that is identically $0 \forall j>K$, hence making it valid to use this inequality. Thus $\forall n>N$ we have

$$
\begin{aligned}
\left(\sum_{j=1}^{K}\left|x_{j}\right|^{p}\right)^{1 / p} & =\left(\sum_{j=1}^{K}\left|x_{j}-x_{j}^{(n)}+x_{j}^{(n)}\right|^{p}\right)^{1 / p} \\
& \leq\left(\sum_{j=1}^{K}\left|x_{j}-x_{j}^{(n)}\right|^{p}\right)^{1 / p}+\left(\sum_{j=1}^{K}\left|x_{j}^{(n)}\right|^{p}\right)^{1 / p} \\
& \leq \varepsilon+\left(\sum_{j=1}^{K}\left|x_{j}^{(n)}\right|^{p}\right)^{1 / p}
\end{aligned}
$$

If we now let $K \rightarrow \infty$, again appealing to limit inequality properties from before, we arrive at the crucial inequality that tells us that $X=\left\{x_{j}\right\}_{j=1}^{\infty}$ is in ℓ^{p} since:

$$
\begin{gathered}
\lim _{K \rightarrow \infty}\left(\sum_{j=1}^{K}\left|x_{j}\right|^{p}\right)^{1 / p} \leq \lim _{K \rightarrow \infty}\left[\varepsilon+\left(\sum_{j=1}^{K}\left|x_{j}^{(n)}\right|^{p}\right)^{1 / p}\right] \\
\Longrightarrow\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{p}\right)^{1 / p} \leq \varepsilon+\left(\sum_{j=1}^{\infty}\left|x_{j}^{(n)}\right|^{p}\right)^{1 / p} \\
\therefore \quad\|X\|_{p} \leq \varepsilon+\left\|X^{(n)}\right\|_{p}
\end{gathered}
$$

Since this statement must be true for any fixed $\varepsilon>0$ and any fixed $n>N$, and since we know that $\left\|X^{(n)}\right\|_{p}$ is finite since for fixed $n, X^{(n)}=\left\{x_{j}^{(n)}\right\}_{j=1}^{\infty} \in \ell^{p}$, this tells us that $\|X\|_{p}$ itself must be finite, hence $X \in \ell^{p}$.

Now we just need to show that $\lim _{n \rightarrow \infty}\left\|X^{(n)}-X\right\|_{p}=0$. But this is clear since if we take $K \rightarrow \infty$ in (5.1), we get that for $n>N$

$$
\left\|X^{(n)}-X\right\|_{p}^{p}=\sum_{j=1}^{\infty}\left|x_{j}^{(n)}-x_{j}\right|^{p} \leq \varepsilon^{p}
$$

Thus since we have this for any ε, we have shown that $\lim _{n \rightarrow \infty}\left\|X^{(n)}-X\right\|_{p}=0$ as required. Thus, $X^{(n)}=\left\{x^{(n)}\right\}_{n=1}^{\infty} \subset \ell^{p}$ is a convergent sequence that converges to $X=\left\{x_{j}\right\}_{j=1}^{\infty} \in \ell^{p}$, hence ℓ^{p} is a complete normed linear space for $1<p<\infty$.
$\underline{p=\infty}$
Once again consider a Cauchy sequence $X^{(n)}$ as before, this time with

$$
d_{\infty}\left(X^{(n)}, X^{(m)}\right)=\left\|X^{(n)}-X^{(m)}\right\|_{\infty}=\sup _{i \in \mathbb{N}}\left|x_{i}^{(n)}-x_{i}^{(m)}\right|<\varepsilon
$$

Again, fix a $j \in \mathbb{N}$ to see that $X_{j}^{(n)}$ is Cauchy since

$$
\left\|X_{j}^{(n)}-X_{j}^{(m)}\right\|_{\mathbb{R}}=\left|x_{j}^{(n)}-x_{j}^{(m)}\right| \leq \sup _{i \in \mathbb{N}}\left|x_{i}^{(n)}-x_{i}^{(m)}\right|=\left\|X^{(n)}-X^{(m)}\right\|_{\infty}^{p}<\varepsilon
$$

By the same argument as above (\mathbb{C} is complete, etc.), we have $\lim _{n \rightarrow \infty} X_{j}^{(n)}=x_{j} \in \mathbb{C}$.
We now appeal to the fact that $\|\cdot\|_{\infty}$ is a continuous function and basic properties of sup to show that

$$
\begin{gathered}
\lim _{m \rightarrow \infty} \sup _{i \in \mathbb{N}}\left|x_{i}^{(n)}-x_{i}^{(m)}\right| \leq \lim _{m \rightarrow \infty} \varepsilon \\
\sup _{i \in \mathbb{N}}\left|x_{i}^{(n)}-\lim _{m \rightarrow \infty} x_{i}^{(m)}\right| \leq \lim _{m \rightarrow \infty} \varepsilon \\
\Longrightarrow\left\|X^{(n)}-X\right\|_{\infty} \leq \varepsilon
\end{gathered}
$$

which shows us that $\lim _{n \rightarrow \infty}\left\|X^{(n)}-X\right\|_{\infty}=0$. Hence we can also now see that

$$
\begin{aligned}
\|X\|_{\infty}=\sup _{i \in \mathbb{N}}\left|x_{i}\right| & =\sup _{i \in \mathbb{N}}\left|x_{i}-x_{i}^{(n)}+x_{i}^{(n)}\right| \\
& \leq \sup _{i \in \mathbb{N}}\left(\left|x_{i}-x_{i}^{(n)}\right|+\left|x_{i}^{(n)}\right|\right) \\
& \leq \sup _{i \in \mathbb{N}}\left(\left|x_{i}^{(n)}-x_{i}\right|\right)+\sup _{i \in \mathbb{N}}\left(\left|x_{i}^{(n)}\right|\right) \\
& \leq \varepsilon+\left\|X^{(n)}\right\|
\end{aligned}
$$

Again, this shows that $\|X\|_{\infty}$ is finite, hence $X \in \ell^{p}$. Thus we have shown that $\left(\ell^{p},\|\cdot\|_{p}\right)$ is a Banach space as required.

