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Q1. Metric on space of Cauchy Sequences
Part a)
Let (X, d) be a metric space and define
X' := {Cauchy sequences {z,}2, in (X,d)}
X SR A} 53 = lm d(w,, o)

We claim that d’ is not a metric on X’. We will show that for z,y € X', with
v ={z,}52, and y = {ya}72y, that d'(z,y) =0 =5 z =y.

Consider the the metric space (X, d) with X =R and d(a,b) = |a — b|. Suppose
r, = e ™ and y, = —e ", which are both clearly convergent, hence Cauchy se-
quences, so z,y € X'. Then

—n

d'(z,y) = lim d(z,,y,)

n—0o0

= lim |e" — (—e )|
n—oo

= lim |2¢7"|
n—oo

=0

However, clearly we see that x # y as sequences. Thus, d'(z,y) =0 =~ z =y and
so we conclude that d’ is not a metric on X’ as claimed. []

Part b)

Let X = X'/ ~, where ~ is the equivalence relation {z, };2; ~ {yn}oe, if and only if
d(p,yn) — 0. Let d : X — R be defined as d([{zn}721], {yntnzi]) = &' ({xnfozs {¥ntoer)-
We will first show that d is a metric function, and then show that it is well defined.



d is a metric function

Let z,y,2 € X be defined as in part a). Most properties of d are derived from
the fact that we inherit the well defined metric function d on X.

(i) d([z],[y]) >0

Since d(x,,,y,) > 0, clearly cZ([x], [y]) = lim d(z,,y,) > 0.

n—o0

(i) d([2],[y]) =0 <= [a] = [y]

(a) == Assume d([z], [y]) = 0. Then lim,_,o d(z,,y,) = 0. By definition,
this means [z] = [y].

(b) <= Assume [z] = [y]. Then d([z],[y]) = d([z], [z]) = lim d(zn,z,) =0

n—oo
since d is a well defined metric.

(iii) d([z], [y]) = d([y], [2])

d([z], [y]) = lim d(z,,ys) = lim d(y,, z,) = d([y], [2])

(iv) d([z], [2]) < d([2], [y)) + d([y], [2])
d([a), [2]) = lim (d(zn, z,))
< lim (0, yo) + d(Yn, 20)
= Jim d{n,gn) + lim dlyn, 20)

= d([z], [y]) + d([y], [2])

Hence we have shown that d satisfies the necessary properties of a metric.

d is well defined

(i) (2], [y]) € X x X = d([2],[y]) € R

Take ([z],[y]) € X x X. Since d(z,,,) € R we see that

d([z],[y]) = lim d(x,,y,) € R since R is complete.

n—oo

(i) ([21], [n)) = ([wa], [y2]) = d([2a], [1]) = dl[a2], [1])

Suppose ((z1], [11]) = (2], [32]). Then
([ ) = Ton d((z1), (y1)0)
= T d((#2)n, (42))

n—oo
= d([z2], [y2])
since d is a well defined metric.

Hence we conclude that d is a well defined metric function on X as required. [J



Q2. Unit ball in Holder space
For a € (0, 1), the Holder space of order « is denoted C*[a, b], where

Fecoal < |flee = sup [f(z)+ sup LD TG

z€lab] syelay T —y|*

We then define the unit ball (open or closed does not matter - we choose closed)
around 0 in C“[a, b]

B(0;1) = {f € C%a,b] : [[fllce <1}

To show that B(0;1) is a pre-compact subset of C°|a, b], we can appeal to the Arzela-
Ascoli theorem that says if F is a uniformly bounded and uniformly equicontinuous
subset of C°[a, b], then F is pre-compact. By definition we have

B(0;1) € C%a,b] C Ca,b].

B(0;1) is uniformly bounded if 3C' > 0 such that Vf € B(0;1) |[fllce < C.
This is clear since by definition if f € B(0;1) = ||f]lce < 1, so clearly C' =1
is suitable. Note that C' is independent of f, causing the uniformity. Also, every
f is also uniformly bounded with respect to the sup-norm since ||f|l, < 1 =
SUD,epop [f(2)| <1 = [f(z)| <1 for all x € [a,b].

B(0;1) is uniformly equi-continuous if
Ve>0 36>0 st. |[z—y|<d = |f(zx)— fly)| <e

where 0 is independent of x,y € [a,b] and f € B(0;1). Let € be fixed. Then
Vf e B(0;1) we have

fllen = sup f@)]+ sup LSOy
z€[a,b] x,y€a,b| |JZ - y|o<
—sup MEIZHO <1 s (o)) <1
z,y€a,b] x y| z€[a,b]
= Vaz,y € [a,]] M_l

So if we choose § = /% (where « is fixed), then
o —yl <5 =" = |f(z) = f)| < o —y|* < (V)" =¢

where we used the fact that (.)* is monotonically increasing for 0 < a < 1.
Since § = /¢ is independent of z,y € [a,b] and f € B(0;1), then we determine
that B(0;1) is uniformly equi-continuous.

Thus, by the Arzela-Ascoli Theorem, we see that B(0;1) is a pre-compact subset of
C%a,b]. O



Q3. Inner Product Spaces

Part a)

Let (V, (-, -)) be an inner product space, x,y € V. Define |z||* = (x,z). Then

le+yllP = llz—ylP=@+yz+y) — (z—y.z—y)
= (z,2) + (v,y) + (v, 2) + (v, 9)
— [(=, w)+_(x, —y) + (=¥, 7) + (=y, —y)]

= (z,9) + (z,9) — [~ (z,y) — (y,7)]

= 2(z,y) + 2(z,y)
= 4 Re(x,y)

Where we appealed to the fact that (—z,y) = (z, —y) = —(z,y) and (y,z) = (z,y).

Also, Re(z) = Z££. Similarly,

|z +iy|* — |z —iy|* = (z + iy, x + iy) — (x — iy, x — iy)
= (z,2) + (z,1y) + (iy,z) + (y,y)
— [(@,2) Jr(i—iy) + (—1y, fv)+_(—iy, —iy)]

=i(z,y) —i(z,y) — [i(z,y) +i(z,y)]

= 22(:(:73/) - 22(:(:73/)
=4iIm(x,y)

Where we appealed to the fact that (z,iy) = (—iz,y) = i(z,y) and Im(z) =
Hence,

1
T4
= (z,y)

This proves the polarisation identity holds for a given inner product space V. [J

;l((va +yll* =l —yl®) —i(lz +iyl|* = |z — iy[|*)) = 7 (4Re(z,y) + 4Im(z, y))

Part b)

Let (V,||.]|) be a normed linear space (NLS). A NLS satisfies the parallelogram law
if it obeys the following identity Vz,y € V
lz + yll* + llz = ylI* = 2[|z]|* + 2[|=|?
(i) Inner product space = parallelogram law
Suppose V' is also an inner product space (IPS) with the inner product defined
in the standard way. Then we have
|z +ylI* + llz = ylI* = (= +y, 2 +y) + (z —y, 2 — y)
= (z,2) + (2, 9) + (v, ) + (,9)
+ (z,2) = (2,y) = (y,2) + (=y, —y)
= 2(x, 2) +2(y, y)
= 2l|* + 2yl
and so the IPS V obeys the parallelogram law as required.



(i) NLS with parallelogram law — IPS

Now suppose that V' satisfies the parallelogram law. We wish to show that
the inner product defined by the polarisation identity is indeed a well defined
inner product satisfying all of the necessary conditions.

Let z,y,2 € V and a € C.

(i) (z,y) = (y,2)

— 1 . . .

(y,2) = 7 ((ly+ =l = lly = 2l*) = illly + x> = lly — i=[]*)
1 . . .
= 7 Uz +yl* = llz = yl*) = illly — iz* = lly + ix]*))
1 L : : :
= 7 Uz +yl* = llz = ylI*) =i (il ly — ézl* ==l lly + ix]]*)
1 s : . :
= 7 Uz +ylP = llz = yI”) =i (1@ — i) * = (=) (v +i0)[*))
1 . . .
= 7 Uz +ylP = llz = ylI*) =i (2 + ayll* = llz — iyll"))
= (,9)

Where we used the fact that |—i| =|i| = 1 and |a* ||z]|? = ||az|?.

(i) (z,z) >0and (z,2) =0 = =0

1 ) ) .
(@.2) = & (e 2l = o = ) = (o + i = o ]2)
1 ) .
= 1 (40P = i (ot P l? i el )
1 .
L (el = (2l = 2]
~ Jalf* > 0

Where the last line is clear from properties of a norm.

Now assume that (z,z) = 0. Since (z,z) = ||z||* as shown above, this
implies that ||«]|> = 0 but since ||.|| is a norm, this is only true when
z = 0. Hence (z,2) =0 = 2z =0.

(iii) (x,1y) =i(x,y) (sub-property - full property discussed later)

(z,iy) = 7 ((lz +ayl* = llz —iyll*) —i(lz + i(iy)[I* — |z — iGiy)[*))

1
:
i ( (lz + I = llz =) + (lz + iyl — |2 — iyl*))

= (Z) ((lz +yl* =z = )I*) = i(llz +iyll* — |z — iy[*))

= i(l‘,y)



(iv) (z+y,2) = (z,2) + (y,2)
We first look at (z+y, z) to see what objects we are interested in studying.

1
(w+9.2) = 7 (I +y) + 21 = ll@+y) =21
=i Iz +y) +iz))* = [z +y) —iz]]*)
Using the parallelogram law, we see

Iz + 2) +ylI* = 2]}z + 2[* + 2[lyl* — | + 2 — gl (3.1)
Iy +2) +2l* =2lly + 2[1* + 2l|=[* — |y + = — 2| (3:2)

Rearranging, we see that

1
= lle+y+2I = S[@lle + 21 + 2yl = llz + 2 - y]°)

+ (2l + 2l + 2l ~ lly + 2 2]
= el + P+l + 217 + y + 21
- R
We can then make the substitution sending z — —z to get the following
o 4y — 2l = el + ol + e = =P+l — =1
i R
= el + 1l + llz — 21 + iy =1
T -1 [ R |
= 2l + Iyl + o = 2| + iy — =1
Stz —al? = Sl + =~ gl

Comparing terms, we get
1
Re(z+y,2) = 7 (o +y+ 21" = e +y - 2|
1
= 7 Uz + 2P = llz = =I°) + (ly + 21” = ly = =1)
= Re(z, z) + Re(y, 2)

Similarly for the imaginary part, and sending z + 4z in our previous
identities,
Im(z +y,2) = — (llo+y +iz]|* = [lz +y —i2]?)

I N

((lz +iz)l* = o —i2l*) + (ly + izl* — lly — i2]*))
— Re(x,iz) — Re(y, iz)
— Re(

e(i(z, 2)) — Re(i(y, 2))
Im(x,z) Im(y, 2)



Hence, since Re(z + y,2) = Re(z,z) + Re(y, z) and Im(x + y,2) =
Im(z, z) + Im(y, 2), by the uniqueness of complex numbers we conclude
that (z +y,2) = (x,2) + (y,2) as required. We also notice linearity in
the second term

(:U,y+z) = (y+z,:v) = (y,x) + (Zax) = (y,x) + (Z,JJ) = (xay) + (1‘,2)
(v) (z,ay) = a(z,y)

We have already shown this is the case for (z,iy) = i(x,y). It is triv-
ial to show that (z,—y) = —(z,y) and that (z,0) = 0. By induc-
tion, from the linearity of property iv), we can show that for n € N,
(x,ny) = (z,y) + -+ + (z,y) = n(x,y). Combining this with the afore-
mentioned properties, we get that for n € Z we have (z,ny) = n(x,y).
We now want to consider the case of 5 € Q. Consider f = m/n € Q
for m,n € Z (n # 0). Then we see, using the properties for m,n € Z as
mentioned above,

m nm 1 1 1

5 85) = (o, ™) = ", ) = (e, ) = (mnw) = (20)

= (xvﬁy) = 5(33,’!;)

Which shows that the property holds for § € Q. To extend this result to
R, wedefine¢p : R — C, ¢(a) = (z,ay)andy : R - C, ¥(a) = a(x,y).
Both ¢ and v are continuous functions due to the continuity of the norm
that induces the inner product. We showed above that ¢|Q W@a and
then we can use the fact that if two continuous functions agree on a dense
subset of their preimage (i.e. Q C R) then they agree everywhere. Thus,
we have ¢ = 1. Extending this to C with the property (x,iy) = i(x,y)
and linearity in the second term, we see that (z,ay) = a(z,y) Va € C as
required.

Thus, since (z,y) induced by ||.|| with the parallelogram law obeys all necessary
conditions for an inner product, we conclude that a normed linear space is an inner
product space if and only if the norm satisfies the parallelogram law. [

Part c)

Let (C%a,b],||.]loc) be the normed linear space of continuous functions, where for
f € C°a,b] we define || f oo = max,cjo|f(x)]. We will show by use of a counterex-
ample that this norm does not obey the parallelogram law for specific f and g.

Let f,g € C%a,b] be defined as f(z) = z and g(x) = 1 — z on the interval [0, 1].
Then

2 2
||f+g||§o+||f—g||§o=(ma><|f g(x)\)+(ma><\f g<x>\)

€[0,1] €[0,1]
2 2
= (max|1\) <max\1—2x]>
z€[0,1] €10,1]
=1"+1°=2



But,

2/ £11% + 2llgll%

2 2
2(max|f(x)‘) —l—2(max|g ‘)
z€[0,1] z€[0,1
2 2
2<max|x]> +2<max|1—x\)
z€[0,1] €[0,1]

=2(1%) +2(1%) = 4

Hence, we observe that [|f + g||% + ||/ — gll% # 2| /1|2 + 2]|9]|% and so the paral-
lelogram law does not hold for this case. Therefore, using part b), we deduce that
(C%a, b],]-|le) is not an inner product space. [

Q4. Closed subspaces of C"[a,b] are not as nice

We have proven that for a Hilbert space H with M C H a closed subspace, then
Vv € H there is a unique w € M satisfying |[w — v|| = infrenm |0 — v]|. We will
construct a counter example for the normed linear space (C°[a,b], ||.||s). Without
loss of generality, assume the interval [a, ] is [0, 1] for ease.

Consider the subspace X C C°[0, 1] defined by:
X = {g € C°0,1] : g(0) = 0}

The fact that X is a subspace is clear - the fact that it is closed in the topological
sense deserves some attention. Consider the functional 7' : CY[0,1] — R defined
by T(g) = ¢(0). It is clear that T is a linear functional. We also see that T is
bounded since [T(g)| = [g(0)| < ||g]l (since ||g]|so is finite Vg € C°[a,b]). Hence, by
the lemma in class, this implies that 7" is a continuous linear functional. We know
that under continuous functions, the pre-image of a closed subset is closed. Hence,

~1({0}) = X is closed in the topological sense. Thus X°[0, 1] is a closed subspace.

Now consider the function f € C°[0,1] with f(z) = 1. We will show that there
are multiple g € X that infimise the distance to f. We see that since f(0) =1 and
(Vg € X) g(0) = 0, we have |g(0) — f(0)| = |0 — 1| = 1. This tells us that

it s = fll = int, (max /)~ (o)) = 1

g'eXx g'eX \ z€[0,1]
Consider the functions gy, g2 € X defined by ¢;(z) = = and go(z) = 2. Then
lg1 = flloo = max |z — 1] =1

z€]0,1]
— Flla = 0w —1| =1
lga — [l ;g[gﬁ]! r — 1

Since we have shown that infycx ||¢' — flloc > 1, and we have found two distinct
g1, 92 € X that both infimise the distance to the function f € C°[0, 1], we conclude
that (C%a, ], ||.||«) does not have this same "unique closest element’ property that
we observed for a closed subspace of H. [



Q5. (P space is Banach

Let (7, ]|.]|,) (with 1 < p < 0o) denote the normed linear space of sequences that
converge with respect to the p-norm, that is, for a sequence of complex numbers
x = {x;}5°, € (7, define

- 1/p
lzllp = D lwil? |, 1<p<oo, [l :=supla
— ieN

The fact that both of these definitions define a normed linear space is trivial given
that we may use, without proof, the Minkowski inequality to verify the triangle
inequality (i.e. Va,y € %, ||z 4+ y|, < ||z|l, + ||y]lp). Proving completeness is clearly
non-trivial, so we divide into the two separate cases. By definition, ¢ is complete if
IX € st lim, o | X™ — X, =0.

1<p<oo
Consider a sequence of elements in /7 denoted by X = {2("}22 where
(") = {xg”)}ggl € (P, Let X(™ be a Cauchy sequence - that is,

Ve>0 INEN st. Vn,m >N d,(X™ XM) <¢
where we define

1/p

o0
(X, X0 = X0 = X0y = | 3 — ™)
i=1

We wish to show that the sequence X = {z;}°, is an element of /% (i.e. [ X]||,
is finite) and that lim, . [|X™ — X||, = 0. Clearly, the natural choice for X is

X = {nh_{lc}o Ty b

We first notice that for a fixed 7 € N, the sequence X](-n) = {xg-n)}flo:l c Cis
Cauchy since Vn,m > N

”Xj(n) . Xj(m)‘|p _ ‘xgn) . m§m)|p < Z ‘xgn) . $§-m)‘p _ HX(n) . X(m)Hg < 2P
=1

We can then use the fact that for fixed j,n € N we have xg-n) € C. Since C is com-
plete, we see that our Cauchy sequence X ](") must converge to an element x; € C.
(n)

Define this as lim,,_, Xj = ;.

For the finite sum with a fixed K € N, we have Vm,n > N that

K )
STl = 2P <3 el —almp = | x - x e < o
j=1 j=1



Since we are now dealing with a finite sum and |.| is a continuous function, and using

basic properties of limits on inequalities (i.e. if Vn a, < b, = lim a, < hm by),
n—oo

we see that Vn > N we can move the limit inside the sum as follows

K
3 (") _ p < p
A, 3 Lo = < i e
_ m)p < P
— Z|x Trlbl_r)noox P<e
7j=1
K
= Y laf —ayP < (5.1)
j=1

We now appeal to the Minkowski inequality. Though this statement is relevant for
an infinite sum, we may regard our finite sum over 7 = 1, ..., K as being an infinite
sum over a sequence that is identically 0 Vj > K, hence making it valid to use this
inequality. Thus Vn > N we have

K 1/p K 1/p
(T I Do e
7=1 j=1
> 1/p X 1/p
S B DR
j=1 =1
1/p

K
<ot | D lagr
j=1

If we now let K — oo, again appealing to limit inequality properties from before,
we arrive at the crucial inequality that tells us that X = {x;}32, is in * since:

1 1
K /p K /p

. ‘ . (n)
dm | 2 lel | i e | D leTF

j=1 j=1

~ 1/p - 1/p
= | Dl e+ | Dol
j=1 j=1

X1l < e+ X1,

Since this statement must be true for any fixed ¢ > 0 and any fixed n > N, and
since we know that || X®]|, is finite since for fixed n, X" = {x(n }32, € €7, this
tells us that ||X||, itself must be finite, hence X € (7.

Now we just need to show that lim,_. [|X™ — X |, = 0. But this is clear since if
we take K — oo in (5.1), we get that for n > N

X0 = X|jp =3 ey — gl < e”

j=1

10



Thus since we have this for any e, we have shown that lim,, . ||X™ — X|| »=0as
required. Thus, X = {z(™1> C (P is a convergent sequence that converges to
X = {xj};-";l € (P, hence (P is a complete normed linear space for 1 < p < oo. [

p=0o

Once again consider a Cauchy sequence X ™ as before, this time with

Auo(X ), X = | X — X0V o0 = sup 7" — ™| <&
ieN

Again, fix a 7 € N to see that X ](") is Cauchy since

157 = X"l = [ = ™) < supla® =™ = X - XU, < e

By the same argument as above (C is complete, etc.), we have lim X j(") =z; €C
n—oo

We now appeal to the fact that [|.|| is a continuous function and basic proper-

ties of sup to show that

lim sup|x£n) - xgm)| < lim ¢

sup [z — lim ™| < lim e

— ||X(”) — Xl < e

which shows us that lim,, o [|[X™ — X||s = 0. Hence we can also now see that

(n)

i

(n) |

[ X oo = sup [z = sup [2; — 2;" + =
iEN ieN

< sup (|x1 — 2| + |x§")])

ieN

< sup (|x§") — xJ) + sup (\xin)])
ieN ieN

<e+ ||XM

Again, this shows that || X is finite, hence X € ¢?. Thus we have shown that
(¢7.].]|,) is a Banach space as required. [J

11



