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Liam Carroll - 830916

Due Date: 20th August 2020

1 Sets

Q4. Relative Diagonal

For maps p : X → Z and q : Y → Z define the fiber product of p and q as

X ×p,Z,q Y = {(x, y) ∈ X × Y : p(x) = q(y)} . (1.4.1)

Let f : X → Y be a map of sets. Let

∆f : X → X ×f,Y,f X : x 7→ (x, x) (1.4.2)

be the induced relative diagonal map.

Part a)

Suppose for x, x′ ∈ X we have ∆f (x) = ∆f (x
′), then (x, x) = (x′, x′) as elements of

X ×X, thus we necessarily have x = x′ and so ∆f is always injective.

Part b)

Suppose ∆f is surjective. Then for all (x, x′) ∈ X ×f,Y,f X, there is some z ∈ X
such that ∆f (z) = (x, x′), where we necessarily have f(x) = f(x′) by definition of
of the fiber product. But then

∆f (z) = (z, z) = (x, x′) , (1.4.3)

so by the transitivity of equality we must have x = x′ and so f itself is injective.

Suppose f is injective, then every element of X ×f,Y,f X must be of the form (x, x)
for some x ∈ X, hence we have ∆f (x) = (x, x) for any (x, x) ∈ X ×f,Y,f X and so
∆f is surjective. Thus ∆f is bijective if and only if f is injective.

Part c)

From part a) we know that ∆f is always injective, hence we can apply part b) to
deduce that we must have ∆∆f

is always bijective.
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Q7. Coequiliser

Let f, g : X → Y be maps of sets. Define coeq(f, g) = Y/R the coequiliser, where
R is the smallest equivalence relation containing the subset

{(f(x), g(x)) ⊆ Y × Y : x ∈ X} . (1.7.1)

We want to show that the induced map π : Y → coeq(f, g) has the following
universal property: if s : Y → S is a map such that s ◦ f = s ◦ g, then the following
diagram commutes:

X
f
//

g
// Y π

//

s

))coeq(f, g)
∃!w
// S . (1.7.2)

Let b ∈ Y and π(b) ∈ coeq(f, g) (where we note that we can indeed write every
element of coeq(f, g) as π(b) since π is naturally surjective). Define the map w as

w : coeq(f, g)→ S (1.7.3)

π(b) 7→ s(b) .

We know that w(π(b)) = s(b) ∈ S by definition of s. Further, suppose π(b) = π(b′)
for b, b′ ∈ Y , then we have three possibilities due to the definition of quotienting by
the smallest equivalence relation containing (1.7.1). We either have b = b′ or; for
some x ∈ X, f(x) = b and g(x) = b′ or; f(x) = b′ and g(x) = b. In the first case:

w(π(b)) = s(b) = s(b′) = w(π(b′)) ; (1.7.4)

in the second case,

w(π(b)) = s(b) = s(f(x)) = s(g(x)) = s(b′) = w(π(b′)) ; (1.7.5)

and the third case is clearly identical by symmetry. Therefore w is well defined.
Uniqueness follows from the fact that if w′ also satisfied all of these same properties
then it would have to satisfy w′(π(b)) = s(b) = w(π(b)) and so the universal property
holds true.

2 Monoids

Q6. Classification of submonoids

We will treat this as an exploratory question. We first note that the canonical sub-
monoids of (N,+) are aN for some a ∈ N. However, the complement N\aN is clearly
not finite, for example N\3N = {1, 2, 4, 5, 7, 8, . . . } is not finite.

We can then investigate submonoids S in which a finite subset S ′ ⊂ N is “deleted”,
i.e. S = N\S ′, which gives us the desired finiteness of N\S = N\(N\S ′) = S ′. In
order to maintain submonoid structure, we always need 0 ∈ S, so 0 will never be in
S ′, but the trickier condition to uphold is maintaining closure under addition. We
then see that the simplest example one could write down would be S ′ = {1} and
indeed S = N\{1} is a submonoid.
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We can generalise this and come up with our first form of submonoid: let n ∈ N,
then

Sn = N\{1, . . . , n} = {0, n+ 1, n+ 2, . . . } is a submonoid, (2.6.1)

since it clearly contains the identity and it is closed under addition.

Interestingly though, we can go further than this. If we want to add elements
back into Sn by deleting elements from S ′n, this will sometimes work - for exam-
ple N\{1, 3} is also a submonoid, but N\{1, 3, 4} is not since 2 ∈ N\{1, 3, 4} but
2 + 2 = 4 /∈ N\{1, 3, 4} so it isn’t closed under addition. This gives us a clue: if
we choose to delete an element from S ′n, then we also need to delete all of its linear
combinations with other deleted elements.

Generalising this last paragraph we can finally classify all submonoids of (N,+). For
any given n ∈ N, let S ′n = {1, . . . , n}. For any subset A′n ⊂ S ′n\{1}, let span(A′n) be
the set of all linear combinations of elements in A′n. Then the set of all submonoids
of N with finite complement is{

N\
(
S ′n\span(A′n)

) ∣∣∣∣ S ′n = {1, . . . , n} for some n ∈ N and A′n ⊂ S ′n\{1}
}
. (2.6.2)

3 Groups

Q7. Kernels and cokernels

Let f : G→ H be a group homomorphism. Define

kerf = eq(f, 1) and cokerf = coeq(f, 1), (3.7.1)

where 1 : G → H is the constant group homomorphism, i.e. for every g ∈ G we
have 1(g) = 1H ∈ H.

Part a)

We want to prove that the following are equivalent:

(a) f is injective as a map of sets;

(b) kerf = {1};

(c) if q1, q2 : Q → G is a group homomorphism, then q1 = q2 if and only if
fq1 = fq2, i.e. f is an epimorphism.

First suppose (a) is true, so for x1, x2 ∈ G, f(x1) = f(x2) implies x1 = x2. Since
f is a group homomorphism this can be re-expressed as f(x1x

−1
2 ) = 1H implies

x1x
−1
2 = 1G, which is precisely the statement that eq(f, 1) = kerf = 1G, so (a)

implies (b).
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Now suppose kerf = {1}. The first direction of (c) is clearly trivial since f is a
well defined function, so suppose fq1 = fq2. Since f is a homomorphism, this is
equivalent to f(q1(x)q2(x)−1) = 1H for some x ∈ Q, but since kerf = {1}, we clearly
have that q1(x)q2(x)−1 = 1G, so q1 = q2 and so (b) implies (c).

Finally, suppose (c) holds - note that this statement is really saying that for any
arbitrary Q this if and only if statement holds. So, we can set Q = Z (where id = 0,
not 1) and define q1(1) = x1 ∈ G and q2(1) = x2 ∈ G. Suppose x1, x2 ∈ G is
such that f(x1) = f(x2), so f(q1(1)) = f(q2(1)) and by the assumption this yields
q1(1) = q2(1) and so x1 = x2, hence f is injective.

Part b)

To prove the “dual” version of this statement, we work with the cokernel instead of
the kernel and replace injectivity with surjectivity. We also now suppose that H is
Abelian (and non-trivial). Also, since we are now working with Abelian groups, it
is more convenient to let the identity element be 0. Further, condition (c) becomes:
if q1, q2 : H → Q are group homomorphisms, then q1 = q2 if and only if q1f = q2f .
Note that using Sets Q7 and also a definition from lectures, we can write (where the
Abelian nature of H allows us to take a quotient in good faith)

coker(f) = coeq(f, 0) = H/imf . (3.7.2)

Suppose f is surjective, so imf = H and so H/imf = {0}, so (a) implies (b). The
opposite direction is an identical argument.

To show (a) implies (c), suppose f is surjective again and suppose we have q1(f(g)) =
q2(f(g)) for some g ∈ G, then since f is surjective we are guaranteed to have a b ∈ H
such that f(g) = b, so q1(b) = q2(b) so q1 = q2.

Now suppose (c) is true and let Q = H/im f . By being clever, we can define
q1 : H → H/im f as q1(h) = 0 for all h ∈ H but more importantly, we can define
q2 : H → H/im f as, being a simplified version of the canonical quotient map where
0 6= a ∈ H/im f ,

q2(h) =

{
0 if h ∈ im f

a otherwise
. (3.7.3)

Then using this construction, we see that for any g ∈ G we have (q1 ◦ f)(g) = 0
and (q2 ◦ f)(g) = 0 by the above construction. Therefore we must have q1 = q2 by
assumption, which necessarily says that im f = H by (3.7.3), hence showing that f
is surjective so (c) implies (a) and we are done.

With reference to [5].
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4 Abelian Groups

Q2. Splitting lemma

Consider a short exact sequence of Abelian groups

0 −→ N1
i−→N2

p−→N3 −→ 0 . (4.2.1)

We will prove that the following conditions are equivalent:

(a) there exists a homomorphism r : N2 → N1 such that r ◦ i = id;

(b) there exists a homomorphism s : N3 → N2 such that p ◦ s = id;

(c) there is an isomorphism N1 ⊕N3 → N2, where the composition
N1 → N1⊕N3 → N2 coincides with i and the composition N2 → N1⊕N3 → N3

coincides with p.

We first show that (a) implies (c), so assume that (a) is true. Let b ∈ N2, then in
writing

b = (b− (i ◦ r)(b)) + (i ◦ r)(b) , (4.2.2)

we can show that b ∈ ker(r) + im(i). Clearly i(r(b)) ∈ im(i), but further we have
(noting that r is a homomorphism)

r(b− (i ◦ r)(b)) = r(b)− (r ◦ i ◦ r)(b) = r(b)− (id ◦ r)(b) = 0 , (4.2.3)

and so b− i(r(b)) ∈ ker(r).

We next show that ker(r) ∩ im(i) = {0}. Let b ∈ im(i), so for some a ∈ N1 we have
i(a) = b, and suppose that b ∈ ker(r) so r(b) = 0. But then 0 = r(b) = (r◦i)(a) = a,
so a = 0 and so 0 = i(0) = b since i is a homomorphism, thus proving the intersection
is {0}. Hence, we see that

N2
∼= ker(r)⊕ im(i) (4.2.4)

and so for all b ∈ N2 we can write b = i(a) + k for some a ∈ N1 and k ∈ ker(r). The
next step is to show that im(i)⊕ ker(r) ∼= N1 ⊕N3.

Since this is a short exact sequence, we know that i is injective and p is surjec-
tive, and also that im(i) = ker(p). Hence, for any c ∈ N3 we have some b = i(a) + k
such that

c = p(b) = p(i(a) + k) = p(i(a)) + p(k) = p(k) , (4.2.5)

so for any c ∈ N3 we can find a k ∈ ker(r) such that c = p(k), so p is a surjection
between ker(r) and N3. For injectivity, suppose p(k) = 0 for k ∈ ker(r) (it is a group
homomorphism after all), then by exactness we must have k ∈ im(i), but since the
intersection of these sets is {0} we see that k = 0 and so p must be injective. Hence
ker(r) ∼= N3.
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Since i is injective by exactness, we only need to show that i is surjective as a map
into N2, but this is immediate from (4.2.4) and so i induces an isomorphism of
im(i) ∼= N1. Therefore, putting all of this together, we finally see that

N2
∼= im(i)⊕ ker(r) ∼= N1 ⊕N3 . (4.2.6)

The proof of (b) implies (c) is remarkably similar. Performing identical calculations
(a good exercise for the active reader), we can determine that N2

∼= ker(p) + im(s).
Arguments of exactness then gives us that N1

∼= ker(p) and N3
∼= im(s), hence

showing the desired property once again.

The good news is that we have done the hard yards now. To show that (c) im-
plies (a), we define

r = π1 : N1 ⊕N3 → N1 s = ι : N3 ↪→ N1 ⊕N3 (4.2.7)

π1(n1 + n3) = n1 ι(n3) = 0 + n3 .

Because of our isomorphism N2
∼= N1⊕N3 we have our necessary homomorphisms:

let a ∈ N1 and c ∈ N3, then

π1(i(a)) = a , and p(ι(c)) = c , (4.2.8)

where the former is due to injection of i and the latter is due to the surjection of p
and so we are done!

With reference to [7] and [8].
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5 Rings

Q12. Nilradical

Let A be a commutative ring and I ⊆ A an ideal. Define the nilradical of I as

N (I) =
√
I = {a ∈ A : an ∈ I for some n > 0} . (5.12.1)

To show the nilradical is an ideal, first suppose x ∈
√
I and r ∈ A. Then we have

(rx)n = rnxn since A is commutative, and since xn ∈ I and rn ∈ A we must have
rnxn ∈ I by the definition of an ideal, hence rx ∈

√
I.

To show that
√
I is a subgroup, we first note that 0 ∈

√
I since 0 ∈ I for any ideal I,

and if x ∈
√
I with xn ∈ I then we clearly have −x ∈ I since (−x)n = (−1)nxn ∈ I

since I is itself an ideal. The trickier point is closure: suppose that x, y ∈
√
I such

that xn ∈ I and ym ∈ I, we want to show that x+ y ∈
√
I, i.e. there is some p ∈ N

such that (x+ y)p ∈
√
I. Since we already have n and m given to us, we can exploit

this and calculate:

(x+ y)n+m =
n+m∑
k=0

xkyn+m−k =
n∑
k=0

xkyn+m−k +
n+m∑
k=n+1

xkyn+m−k

= ym
n∑
k=0

xkyn−k + xn
m∑
k=1

xkym−k . (5.12.2)

We then see that both summation terms after factorisation are in A, whereas
xn, ym ∈ I, hence both terms in (5.12.2) are themselves in I which is closed, hence
(x + y)n+m ∈ I, and so x + y ∈

√
I. Therefore we conclude that the nilradical of I

is itself an ideal.

With reference to [10].

Q13. Height of a prime ideal

Let A be a ring. We define the height of a prime ideal p ⊆ A as the largest number
h such that there is a chain of prime ideals that are strict subsets of p, that is,

p0 ⊂ p1 ⊂ · · · ⊂ ph = p . (5.13.1)

If we have an inclusion of prime ideals p0 ( p where p0 contains no other prime
ideals besides itself, then p has height 1.

Suppose A is a UFD and p is a height 1 prime ideal, we will show that p is principal.
Since we must always have (0) ⊆ p but p has height 1, we see that p 6= (0) so
contains some nonzero element x ∈ p. Since A is a UFD, x must be the product of
a unit u ∈ A and nonzero prime elements p1, . . . , pn ∈ A,

x = up1 . . . pn . (5.13.2)
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But since p is a prime ideal (so if x = ab ∈ p then either a ∈ p or b ∈ p), we know
that we must have at least one pi in p. We then see that (pi) is also prime ideal in
A, but by (5.13.2) it must be contained in p, so (pi) ⊆ p. Since p has height 1, it is
immediate that (pi) = p, hence showing that p must be principal.

With reference to [2], [9] and [11].

Q14. Jacobson radical

Let A be a ring. Define the Jacobson radical as

R(A) =
⋃

m⊆A: m is maximal

m ⊆ A . (5.14.1)

We will show that a ∈ R(A) if and only if 1− ax ∈ A× (i.e. is a unit) for all x ∈ A.

Suppose a ∈ R(A). For a contradiction, assume there is some x ∈ A such that
1− ax is not a unit. Since 1− ax is not a unit, there exists a maximal ideal m that
contains it (by a Zorn’s lemma argument - see [1]), so 1 − ax ∈ m. Since a is in
R(A), the intersection of all maximal ideals, we know that a ∈ m, hence ay ∈ m.
But since m is a subring, hence closed under addition, we have that

(1− ax) + ax = 1 ∈ m , (5.14.2)

which is clearly a contradiction because then m contains a unit, hence m = A and
so is not maximal. Thus if a ∈ R(A) then 1− ax ∈ A× for all x ∈ A.

For the converse, suppose 1 − ax ∈ A× for all x ∈ A, but again for contradic-
tion, suppose that a /∈ R(A), then there exists some m such that a /∈ m, meaning
we can construct ma = m ∪ {a}. But since m is maximal, we must have

A = (ma) = {m+ ay : m ∈ m and y ∈ A} . (5.14.3)

This importantly means that 1 ∈ (ma) = A, hence there is some m ∈M and y ∈ A
such that 1 = m + ay, so m = 1 − ay ∈ m. But since m is maximal and hence a
proper ideal of A, 1− ay is not a unit in A. Therefore, if 1− ax ∈ A× for all x ∈ A
then a ∈ R(A).

With reference to [1] and [6].
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6 Spectra

Q1. Spectrum of k[[x]]

Let k be a field and let k[[x]] denote the ring of formal power series with coefficients
in k,

k[[x]] = {a0 + a1x+ a2x
2 + · · · : ai ∈ k} . (6.1.1)

We first remind ourselves that since k is a field, hence an integral domain, k[[x]] is
also an integral domain. Let a(x) =

∑∞
i=0 aix

i and b(x) =
∑∞

j=0 bjx
j be non-zero

polynomials in k[[x]]. Let i′ and j′ be the smallest indices such that ai′ and bj′ are
non-zero coefficients in a(x) and b(x) respectively. Then

a(x)b(x) = ai′bj′x
i′+j′ + {higher order terms} 6= 0 (6.1.2)

since both ai′ , bj′ 6= 0. Hence k[[x]] is also an integral domain.

We then want to show that (0), the principal ideal generated by 0 ∈ k[[x]], is a
prime ideal. Suppose p(x), q(x) ∈ k[[x]] are such that p(x)q(x) = 0. Then since
k[[x]] is an integral domain from above, we have that either p(x) = 0 or q(x) = 0,
hence (0) is a prime ideal.

We can also show that (x) is a prime ideal. Suppose p(x), q(x) ∈ k[[x]] are such
that p(x)q(x) = a(x) ∈ (x), so we can write

p(x)q(x) =
∞∑
n=0

 n∑
k=0

pkqn−k

xn =
∞∑
n=1

anx
n , (6.1.3)

specifically noting the sum on the right starts at n = 1 since a(x) ∈ (x). By com-
parison of terms (which uniquely defines a power series), this implies that the first
term p0q0 of p(x)q(x) must be 0, hence either p0 = 0 or q0 = 0 since k is a field. In
either case, this implies one of p(x) or q(x) is in (x), hence (x) is a prime ideal.

But are there any other prime ideals? We note that k[[x]] is a principal ideal domain,
so we only need to investigate other possible principal ideals. There are two obvious
choices, and neither are prime ideals. An ideal of the form (xn) for n ≥ 2 is not
prime, with the trivial counterexample being: suppose p(x)q(x) = xn ∈ (xn), then
we could have p(x) = x and q(x) = xn−1 in k[[x]], neither of which is in (xn) hence
showing it is not prime - indeed, (xn) ⊂ (x).

We could also feasibly have ideals of the form (x − a) for some a ∈ k, but by
Rings Q9 we know that if a0 is a unit in its underlying ring then the formal power
series x − 1 is a unit. Clearly in our case a0 = −a ∈ k is a unit since k is a field,
meaning we just have (x− a) = k[[x]], hence it is also not prime. Combining these
two facts we see that there are no other prime ideals, thus

Spec k[[x]] = {(0), (x)}. (6.1.4)

With reference to [3].
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Q3. Direct product to disjoint union

Let A1, A2 be rings. Considering the direct product ring A1 × A2, we can write
down the canonical projections

π1 : A1 × A2 → A1 π2 : A1 × A2 → A2 (6.3.1)

(a1, a2) 7→ a1 (a1, a2) 7→ a2 .

Clearly both of these maps are surjective which gives us an indication to analyse
an induced map between spectra, which we can define as

β∗ : SpecA1 q SpecA2 → Spec(A1 × A2)

β∗((p, i)) =

{
π−1

1 (p) if i = 1

π−1
2 (p) if i = 2

. (6.3.2)

That β∗ is a bijection largely comes down to determining what the elements of
Spec(A1 × A2) are. We claim that these elements are of the form p1 × A2 or
A1 × p2 for some prime ideals p1 ∈ A1 or p2 ∈ A2. Certainly these elements are
indeed prime ideals: suppose a1, b1 ∈ p1 and a2, b2 ∈ A2 are such that

(a1, a2) · (b1, b2) = (a1b1, a2b2) ∈ p1 × A2 . (6.3.3)

Then a1 ∈ p1 or b1 ∈ p1, so either (a1, a2) ∈ p1 × A2 or (b1, b2) ∈ p1 × A2, hence
p1 × A2 is a prime ideal (and obviously symmetry gives the alternative stated
above).

Are there any others? Suppose P ⊂ A1 × A2 is a prime ideal. Let e1 = (1, 0) and
e2 = (0, 1). Since P is a proper ideal, there is some nonzero element in P - suppose
we have e1 /∈ P . Then we have e1e2 = (0, 0) ∈ P since P is a subgroup, but since P
is prime, we must have e2 ∈ P . Since 1 is a unit in A2, hence generates the whole
ring A2, we see that 0× A2 ⊆ P (since (0, 0) = 0 must be a subset of any prime
ideal). Finally, it is obvious that π1(P ) must be a prime ideal of A1, say
π1(P ) = p1 ∈ A1, but also we must have P = π1(P )× A2. Therefore P = p1 × A2

or P = A1 × p2 are the prime ideals of A1 × A2.

Suppose β∗((p, i)) = β∗((p′, i′)) for prime ideals p and p′ in, say, A1 (which is
clearly symmetric for A2). Note that in order for this equality to make sense we
must have i = i′. Then

π−1
1 (p) = π−1

1 (p′) , so p× A2 = p′ × A2 , so p = p′ , (6.3.4)

so β∗ is injective. Then let p ∈ Spec(A1 × A2). Thanks to our painstaking effort
above, we know that p = p1 × A2 for some prime ideal p1 ∈ A1 (and, as always,
symmetric for the i = 2 case). Then we can just take p1 ∈ Spec(A1) as our element
in the domain, hence

β∗((p1, 1)) = π−1
1 (p1) = p1 × A2 = p , (6.3.5)

and so β∗ is also surjective, hence we have a well defined bijection and we are
done.

With reference to [4].
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