Algebraic Geometry Assignment 1

Liam Carroll - 830916

Due Date: 20th August 2020

1 Sets

Q4. Relative Diagonal

For maps $p: X \rightarrow Z$ and $q: Y \rightarrow Z$ define the fiber product of p and q as

$$
\begin{equation*}
X \times_{p, Z, q} Y=\{(x, y) \in X \times Y: p(x)=q(y)\} \tag{1.4.1}
\end{equation*}
$$

Let $f: X \rightarrow Y$ be a map of sets. Let

$$
\begin{equation*}
\Delta_{f}: X \rightarrow X \times_{f, Y, f} X: x \mapsto(x, x) \tag{1.4.2}
\end{equation*}
$$

be the induced relative diagonal map.

Part a)

Suppose for $x, x^{\prime} \in X$ we have $\Delta_{f}(x)=\Delta_{f}\left(x^{\prime}\right)$, then $(x, x)=\left(x^{\prime}, x^{\prime}\right)$ as elements of $X \times X$, thus we necessarily have $x=x^{\prime}$ and so Δ_{f} is always injective.

Part b)

Suppose Δ_{f} is surjective. Then for all $\left(x, x^{\prime}\right) \in X \times_{f, Y, f} X$, there is some $z \in X$ such that $\Delta_{f}(z)=\left(x, x^{\prime}\right)$, where we necessarily have $f(x)=f\left(x^{\prime}\right)$ by definition of of the fiber product. But then

$$
\begin{equation*}
\Delta_{f}(z)=(z, z)=\left(x, x^{\prime}\right), \tag{1.4.3}
\end{equation*}
$$

so by the transitivity of equality we must have $x=x^{\prime}$ and so f itself is injective.
Suppose f is injective, then every element of $X \times_{f, Y, f} X$ must be of the form (x, x) for some $x \in X$, hence we have $\Delta_{f}(x)=(x, x)$ for any $(x, x) \in X \times_{f, Y, f} X$ and so Δ_{f} is surjective. Thus Δ_{f} is bijective if and only if f is injective.

Part c)

From part a) we know that Δ_{f} is always injective, hence we can apply part b) to deduce that we must have $\Delta_{\Delta_{f}}$ is always bijective.

Q7. Coequiliser

Let $f, g: X \rightarrow Y$ be maps of sets. Define $\operatorname{coeq}(f, g)=Y / R$ the coequiliser, where R is the smallest equivalence relation containing the subset

$$
\begin{equation*}
\{(f(x), g(x)) \subseteq Y \times Y: x \in X\} \tag{1.7.1}
\end{equation*}
$$

We want to show that the induced map $\pi: Y \rightarrow \operatorname{coeq}(f, g)$ has the following universal property: if $s: Y \rightarrow S$ is a map such that $s \circ f=s \circ g$, then the following diagram commutes:

$$
\begin{equation*}
X \underset{g}{\stackrel{f}{\longrightarrow}} Y \xlongequal[\pi]{\xrightarrow{c} \operatorname{coeq}(f, g)_{-\exists!w}^{\longrightarrow}} S . \tag{1.7.2}
\end{equation*}
$$

Let $b \in Y$ and $\pi(b) \in \operatorname{coeq}(f, g)$ (where we note that we can indeed write every element of $\operatorname{coeq}(f, g)$ as $\pi(b)$ since π is naturally surjective). Define the map w as

$$
\begin{align*}
w: \operatorname{coeq}(f, g) & \rightarrow S \tag{1.7.3}\\
\pi(b) & \mapsto s(b) .
\end{align*}
$$

We know that $w(\pi(b))=s(b) \in S$ by definition of s. Further, suppose $\pi(b)=\pi\left(b^{\prime}\right)$ for $b, b^{\prime} \in Y$, then we have three possibilities due to the definition of quotienting by the smallest equivalence relation containing (1.7.1). We either have $b=b^{\prime}$ or; for some $x \in X, f(x)=b$ and $g(x)=b^{\prime}$ or; $f(x)=b^{\prime}$ and $g(x)=b$. In the first case:

$$
\begin{equation*}
w(\pi(b))=s(b)=s\left(b^{\prime}\right)=w\left(\pi\left(b^{\prime}\right)\right) ; \tag{1.7.4}
\end{equation*}
$$

in the second case,

$$
\begin{equation*}
w(\pi(b))=s(b)=s(f(x))=s(g(x))=s\left(b^{\prime}\right)=w\left(\pi\left(b^{\prime}\right)\right) ; \tag{1.7.5}
\end{equation*}
$$

and the third case is clearly identical by symmetry. Therefore w is well defined. Uniqueness follows from the fact that if w^{\prime} also satisfied all of these same properties then it would have to satisfy $w^{\prime}(\pi(b))=s(b)=w(\pi(b))$ and so the universal property holds true.

2 Monoids

Q6. Classification of submonoids

We will treat this as an exploratory question. We first note that the canonical submonoids of $(\mathbb{N},+)$ are $a \mathbb{N}$ for some $a \in \mathbb{N}$. However, the complement $\mathbb{N} \backslash a \mathbb{N}$ is clearly not finite, for example $\mathbb{N} \backslash 3 \mathbb{N}=\{1,2,4,5,7,8, \ldots\}$ is not finite.

We can then investigate submonoids S in which a finite subset $S^{\prime} \subset \mathbb{N}$ is "deleted", i.e. $S=\mathbb{N} \backslash S^{\prime}$, which gives us the desired finiteness of $\mathbb{N} \backslash S=\mathbb{N} \backslash\left(\mathbb{N} \backslash S^{\prime}\right)=S^{\prime}$. In order to maintain submonoid structure, we always need $0 \in S$, so 0 will never be in S^{\prime}, but the trickier condition to uphold is maintaining closure under addition. We then see that the simplest example one could write down would be $S^{\prime}=\{1\}$ and indeed $S=\mathbb{N} \backslash\{1\}$ is a submonoid.

We can generalise this and come up with our first form of submonoid: let $n \in \mathbb{N}$, then

$$
\begin{equation*}
S_{n}=\mathbb{N} \backslash\{1, \ldots, n\}=\{0, n+1, n+2, \ldots\} \quad \text { is a submonoid, } \tag{2.6.1}
\end{equation*}
$$

since it clearly contains the identity and it is closed under addition.
Interestingly though, we can go further than this. If we want to add elements back into S_{n} by deleting elements from S_{n}^{\prime}, this will sometimes work - for example $\mathbb{N} \backslash\{1,3\}$ is also a submonoid, but $\mathbb{N} \backslash\{1,3,4\}$ is not since $2 \in \mathbb{N} \backslash\{1,3,4\}$ but $2+2=4 \notin \mathbb{N} \backslash\{1,3,4\}$ so it isn't closed under addition. This gives us a clue: if we choose to delete an element from S_{n}^{\prime}, then we also need to delete all of its linear combinations with other deleted elements.

Generalising this last paragraph we can finally classify all submonoids of $(\mathbb{N},+)$. For any given $n \in \mathbb{N}$, let $S_{n}^{\prime}=\{1, \ldots, n\}$. For any subset $A_{n}^{\prime} \subset S_{n}^{\prime} \backslash\{1\}$, let $\operatorname{span}\left(A_{n}^{\prime}\right)$ be the set of all linear combinations of elements in A_{n}^{\prime}. Then the set of all submonoids of \mathbb{N} with finite complement is

$$
\begin{equation*}
\left\{\mathbb{N} \backslash\left(S_{n}^{\prime} \backslash \operatorname{span}\left(A_{n}^{\prime}\right)\right) \mid S_{n}^{\prime}=\{1, \ldots, n\} \text { for some } n \in \mathbb{N} \text { and } A_{n}^{\prime} \subset S_{n}^{\prime} \backslash\{1\}\right\} \tag{2.6.2}
\end{equation*}
$$

3 Groups

Q7. Kernels and cokernels

Let $f: G \rightarrow H$ be a group homomorphism. Define

$$
\begin{equation*}
\operatorname{ker} f=\operatorname{eq}(f, 1) \quad \text { and } \quad \operatorname{coker} f=\operatorname{coeq}(f, 1) \tag{3.7.1}
\end{equation*}
$$

where 1: $G \rightarrow H$ is the constant group homomorphism, i.e. for every $g \in G$ we have $1(g)=1_{H} \in H$.

Part a)

We want to prove that the following are equivalent:
(a) f is injective as a map of sets;
(b) $\operatorname{ker} f=\{1\}$;
(c) if $q_{1}, q_{2}: Q \rightarrow G$ is a group homomorphism, then $q_{1}=q_{2}$ if and only if $f q_{1}=f q_{2}$, i.e. f is an epimorphism.

First suppose (a) is true, so for $x_{1}, x_{2} \in G, f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$. Since f is a group homomorphism this can be re-expressed as $f\left(x_{1} x_{2}^{-1}\right)=1_{H}$ implies $x_{1} x_{2}^{-1}=1_{G}$, which is precisely the statement that $\operatorname{eq}(f, 1)=\operatorname{ker} f=1_{G}$, so (a) implies (b).

Now suppose $\operatorname{ker} f=\{1\}$. The first direction of (c) is clearly trivial since f is a well defined function, so suppose $f q_{1}=f q_{2}$. Since f is a homomorphism, this is equivalent to $f\left(q_{1}(x) q_{2}(x)^{-1}\right)=1_{H}$ for some $x \in Q$, but since $\operatorname{ker} f=\{1\}$, we clearly have that $q_{1}(x) q_{2}(x)^{-1}=1_{G}$, so $q_{1}=q_{2}$ and so (b) implies (c).

Finally, suppose (c) holds - note that this statement is really saying that for any arbitrary Q this if and only if statement holds. So, we can set $Q=\mathbb{Z}$ (where id $=0$, not 1) and define $q_{1}(1)=x_{1} \in G$ and $q_{2}(1)=x_{2} \in G$. Suppose $x_{1}, x_{2} \in G$ is such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, so $f\left(q_{1}(1)\right)=f\left(q_{2}(1)\right)$ and by the assumption this yields $q_{1}(1)=q_{2}(1)$ and so $x_{1}=x_{2}$, hence f is injective.

Part b)

To prove the "dual" version of this statement, we work with the cokernel instead of the kernel and replace injectivity with surjectivity. We also now suppose that H is Abelian (and non-trivial). Also, since we are now working with Abelian groups, it is more convenient to let the identity element be 0 . Further, condition (c) becomes: if $q_{1}, q_{2}: H \rightarrow Q$ are group homomorphisms, then $q_{1}=q_{2}$ if and only if $q_{1} f=q_{2} f$. Note that using Sets Q7 and also a definition from lectures, we can write (where the Abelian nature of H allows us to take a quotient in good faith)

$$
\begin{equation*}
\operatorname{coker}(f)=\operatorname{coeq}(f, 0)=H / \operatorname{im} f \tag{3.7.2}
\end{equation*}
$$

Suppose f is surjective, so $\operatorname{im} f=H$ and so $H / \operatorname{im} f=\{0\}$, so (a) implies (b). The opposite direction is an identical argument.

To show (a) implies (c), suppose f is surjective again and suppose we have $q_{1}(f(g))=$ $q_{2}(f(g))$ for some $g \in G$, then since f is surjective we are guaranteed to have a $b \in H$ such that $f(g)=b$, so $q_{1}(b)=q_{2}(b)$ so $q_{1}=q_{2}$.

Now suppose (c) is true and let $Q=H / \operatorname{im} f$. By being clever, we can define $q_{1}: H \rightarrow H / \operatorname{im} f$ as $q_{1}(h)=0$ for all $h \in H$ but more importantly, we can define $q_{2}: H \rightarrow H / \operatorname{im} f$ as, being a simplified version of the canonical quotient map where $0 \neq a \in H / \operatorname{im} f$,

$$
q_{2}(h)=\left\{\begin{array}{ll}
0 & \text { if } h \in \operatorname{im} f \tag{3.7.3}\\
a & \text { otherwise }
\end{array} .\right.
$$

Then using this construction, we see that for any $g \in G$ we have $\left(q_{1} \circ f\right)(g)=0$ and $\left(q_{2} \circ f\right)(g)=0$ by the above construction. Therefore we must have $q_{1}=q_{2}$ by assumption, which necessarily says that $\operatorname{im} f=H$ by (3.7.3), hence showing that f is surjective so (c) implies (a) and we are done.

With reference to [5].

4 Abelian Groups

Q2. Splitting lemma

Consider a short exact sequence of Abelian groups

$$
\begin{equation*}
0 \longrightarrow N_{1} \xrightarrow{i} N_{2} \xrightarrow{p} N_{3} \longrightarrow 0 . \tag{4.2.1}
\end{equation*}
$$

We will prove that the following conditions are equivalent:
(a) there exists a homomorphism $r: N_{2} \rightarrow N_{1}$ such that $r \circ i=\mathrm{id}$;
(b) there exists a homomorphism $s: N_{3} \rightarrow N_{2}$ such that $p \circ s=\mathrm{id}$;
(c) there is an isomorphism $N_{1} \oplus N_{3} \rightarrow N_{2}$, where the composition $N_{1} \rightarrow N_{1} \oplus N_{3} \rightarrow N_{2}$ coincides with i and the composition $N_{2} \rightarrow N_{1} \oplus N_{3} \rightarrow N_{3}$ coincides with p.

We first show that (a) implies (c), so assume that (a) is true. Let $b \in N_{2}$, then in writing

$$
\begin{equation*}
b=(b-(i \circ r)(b))+(i \circ r)(b), \tag{4.2.2}
\end{equation*}
$$

we can show that $b \in \operatorname{ker}(r)+\operatorname{im}(i)$. Clearly $i(r(b)) \in \operatorname{im}(i)$, but further we have (noting that r is a homomorphism)

$$
\begin{equation*}
r(b-(i \circ r)(b))=r(b)-(r \circ i \circ r)(b)=r(b)-(\mathrm{id} \circ r)(b)=0, \tag{4.2.3}
\end{equation*}
$$

and so $b-i(r(b)) \in \operatorname{ker}(r)$.
We next show that $\operatorname{ker}(r) \cap \operatorname{im}(i)=\{0\}$. Let $b \in \operatorname{im}(i)$, so for some $a \in N_{1}$ we have $i(a)=b$, and suppose that $b \in \operatorname{ker}(r)$ so $r(b)=0$. But then $0=r(b)=(r \circ i)(a)=a$, so $a=0$ and so $0=i(0)=b$ since i is a homomorphism, thus proving the intersection is $\{0\}$. Hence, we see that

$$
\begin{equation*}
N_{2} \cong \operatorname{ker}(r) \oplus \operatorname{im}(i) \tag{4.2.4}
\end{equation*}
$$

and so for all $b \in N_{2}$ we can write $b=i(a)+k$ for some $a \in N_{1}$ and $k \in \operatorname{ker}(r)$. The next step is to show that $\operatorname{im}(i) \oplus \operatorname{ker}(r) \cong N_{1} \oplus N_{3}$.

Since this is a short exact sequence, we know that i is injective and p is surjective, and also that $\operatorname{im}(i)=\operatorname{ker}(p)$. Hence, for any $c \in N_{3}$ we have some $b=i(a)+k$ such that

$$
\begin{equation*}
c=p(b)=p(i(a)+k)=p(i(a))+p(k)=p(k), \tag{4.2.5}
\end{equation*}
$$

so for any $c \in N_{3}$ we can find a $k \in \operatorname{ker}(r)$ such that $c=p(k)$, so p is a surjection between $\operatorname{ker}(r)$ and N_{3}. For injectivity, suppose $p(k)=0$ for $k \in \operatorname{ker}(r)$ (it is a group homomorphism after all), then by exactness we must have $k \in \operatorname{im}(i)$, but since the intersection of these sets is $\{0\}$ we see that $k=0$ and so p must be injective. Hence $\operatorname{ker}(r) \cong N_{3}$.

Since i is injective by exactness, we only need to show that i is surjective as a map into N_{2}, but this is immediate from (4.2.4) and so i induces an isomorphism of $\operatorname{im}(i) \cong N_{1}$. Therefore, putting all of this together, we finally see that

$$
\begin{equation*}
N_{2} \cong \operatorname{im}(i) \oplus \operatorname{ker}(r) \cong N_{1} \oplus N_{3} . \tag{4.2.6}
\end{equation*}
$$

The proof of (b) implies (c) is remarkably similar. Performing identical calculations (a good exercise for the active reader), we can determine that $N_{2} \cong \operatorname{ker}(p)+\operatorname{im}(s)$. Arguments of exactness then gives us that $N_{1} \cong \operatorname{ker}(p)$ and $N_{3} \cong \operatorname{im}(s)$, hence showing the desired property once again.

The good news is that we have done the hard yards now. To show that (c) implies (a), we define

$$
\begin{array}{rlrl}
r=\pi_{1}: N_{1} \oplus N_{3} \rightarrow N_{1} & s=\iota: N_{3} \hookrightarrow N_{1} \oplus N_{3} \tag{4.2.7}\\
\pi_{1}\left(n_{1}+n_{3}\right) & =n_{1} & \iota\left(n_{3}\right)=0+n_{3} .
\end{array}
$$

Because of our isomorphism $N_{2} \cong N_{1} \oplus N_{3}$ we have our necessary homomorphisms: let $a \in N_{1}$ and $c \in N_{3}$, then

$$
\begin{equation*}
\pi_{1}(i(a))=a, \quad \text { and } \quad p(\iota(c))=c, \tag{4.2.8}
\end{equation*}
$$

where the former is due to injection of i and the latter is due to the surjection of p and so we are done!

With reference to [7] and [8].

5 Rings

Q12. Nilradical

Let A be a commutative ring and $I \subseteq A$ an ideal. Define the nilradical of I as

$$
\begin{equation*}
\mathcal{N}(I)=\sqrt{I}=\left\{a \in A: a^{n} \in I \text { for some } n>0\right\} . \tag{5.12.1}
\end{equation*}
$$

To show the nilradical is an ideal, first suppose $x \in \sqrt{I}$ and $r \in A$. Then we have $(r x)^{n}=r^{n} x^{n}$ since A is commutative, and since $x^{n} \in I$ and $r^{n} \in A$ we must have $r^{n} x^{n} \in I$ by the definition of an ideal, hence $r x \in \sqrt{I}$.

To show that \sqrt{I} is a subgroup, we first note that $0 \in \sqrt{I}$ since $0 \in I$ for any ideal I, and if $x \in \sqrt{I}$ with $x^{n} \in I$ then we clearly have $-x \in I$ since $(-x)^{n}=(-1)^{n} x^{n} \in I$ since I is itself an ideal. The trickier point is closure: suppose that $x, y \in \sqrt{I}$ such that $x^{n} \in I$ and $y^{m} \in I$, we want to show that $x+y \in \sqrt{I}$, i.e. there is some $p \in \mathbb{N}$ such that $(x+y)^{p} \in \sqrt{I}$. Since we already have n and m given to us, we can exploit this and calculate:

$$
\begin{align*}
(x+y)^{n+m}=\sum_{k=0}^{n+m} x^{k} y^{n+m-k} & =\sum_{k=0}^{n} x^{k} y^{n+m-k}+\sum_{k=n+1}^{n+m} x^{k} y^{n+m-k} \\
& =y^{m} \sum_{k=0}^{n} x^{k} y^{n-k}+x^{n} \sum_{k=1}^{m} x^{k} y^{m-k} \tag{5.12.2}
\end{align*}
$$

We then see that both summation terms after factorisation are in A, whereas $x^{n}, y^{m} \in I$, hence both terms in (5.12.2) are themselves in I which is closed, hence $(x+y)^{n+m} \in I$, and so $x+y \in \sqrt{I}$. Therefore we conclude that the nilradical of I is itself an ideal.

With reference to [10].

Q13. Height of a prime ideal

Let A be a ring. We define the height of a prime ideal $\mathfrak{p} \subseteq A$ as the largest number h such that there is a chain of prime ideals that are strict subsets of \mathfrak{p}, that is,

$$
\begin{equation*}
\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \cdots \subset \mathfrak{p}_{h}=\mathfrak{p} \tag{5.13.1}
\end{equation*}
$$

If we have an inclusion of prime ideals $\mathfrak{p}_{0} \subsetneq \mathfrak{p}$ where \mathfrak{p}_{0} contains no other prime ideals besides itself, then \mathfrak{p} has height 1 .

Suppose A is a UFD and \mathfrak{p} is a height 1 prime ideal, we will show that \mathfrak{p} is principal. Since we must always have $(0) \subseteq \mathfrak{p}$ but \mathfrak{p} has height 1 , we see that $\mathfrak{p} \neq(0)$ so contains some nonzero element $x \in \mathfrak{p}$. Since A is a UFD, x must be the product of a unit $u \in A$ and nonzero prime elements $p_{1}, \ldots, p_{n} \in A$,

$$
\begin{equation*}
x=u p_{1} \ldots p_{n} . \tag{5.13.2}
\end{equation*}
$$

But since \mathfrak{p} is a prime ideal (so if $x=a b \in \mathfrak{p}$ then either $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$), we know that we must have at least one p_{i} in \mathfrak{p}. We then see that $\left(p_{i}\right)$ is also prime ideal in A, but by (5.13.2) it must be contained in \mathfrak{p}, so $\left(p_{i}\right) \subseteq \mathfrak{p}$. Since \mathfrak{p} has height 1 , it is immediate that $\left(p_{i}\right)=\mathfrak{p}$, hence showing that \mathfrak{p} must be principal.

With reference to [2], [9] and [11].

Q14. Jacobson radical

Let A be a ring. Define the Jacobson radical as

$$
\begin{equation*}
\mathcal{R}(A)=\bigcup_{\mathfrak{m} \subseteq A: \mathfrak{m} \text { is maximal }} \mathfrak{m} \subseteq A . \tag{5.14.1}
\end{equation*}
$$

We will show that $a \in \mathcal{R}(A)$ if and only if $1-a x \in A^{\times}$(i.e. is a unit) for all $x \in A$.
Suppose $a \in \mathcal{R}(A)$. For a contradiction, assume there is some $x \in A$ such that $1-a x$ is not a unit. Since $1-a x$ is not a unit, there exists a maximal ideal \mathfrak{m} that contains it (by a Zorn's lemma argument - see [1]), so $1-a x \in \mathfrak{m}$. Since a is in $\mathcal{R}(A)$, the intersection of all maximal ideals, we know that $a \in \mathfrak{m}$, hence $a y \in \mathfrak{m}$. But since \mathfrak{m} is a subring, hence closed under addition, we have that

$$
\begin{equation*}
(1-a x)+a x=1 \in \mathfrak{m}, \tag{5.14.2}
\end{equation*}
$$

which is clearly a contradiction because then \mathfrak{m} contains a unit, hence $\mathfrak{m}=A$ and so is not maximal. Thus if $a \in \mathcal{R}(A)$ then $1-a x \in A^{\times}$for all $x \in A$.

For the converse, suppose $1-a x \in A^{\times}$for all $x \in A$, but again for contradiction, suppose that $a \notin \mathcal{R}(A)$, then there exists some \mathfrak{m} such that $a \notin \mathfrak{m}$, meaning we can construct $\mathfrak{m}_{a}=\mathfrak{m} \cup\{a\}$. But since \mathfrak{m} is maximal, we must have

$$
\begin{equation*}
A=\left(\mathfrak{m}_{a}\right)=\{m+a y: m \in \mathfrak{m} \text { and } y \in A\} . \tag{5.14.3}
\end{equation*}
$$

This importantly means that $1 \in\left(\mathfrak{m}_{a}\right)=A$, hence there is some $m \in M$ and $y \in A$ such that $1=m+a y$, so $m=1-a y \in \mathfrak{m}$. But since \mathfrak{m} is maximal and hence a proper ideal of $A, 1-a y$ is not a unit in A. Therefore, if $1-a x \in A^{\times}$for all $x \in A$ then $a \in \mathcal{R}(A)$.

With reference to [1] and [6].

6 Spectra

Q1. Spectrum of $k[[x]]$

Let k be a field and let $k[[x]]$ denote the ring of formal power series with coefficients in k,

$$
\begin{equation*}
k[[x]]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots: a_{i} \in k\right\} \tag{6.1.1}
\end{equation*}
$$

We first remind ourselves that since k is a field, hence an integral domain, $k[[x]]$ is also an integral domain. Let $a(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ and $b(x)=\sum_{j=0}^{\infty} b_{j} x^{j}$ be non-zero polynomials in $k[[x]]$. Let i^{\prime} and j^{\prime} be the smallest indices such that $a_{i^{\prime}}$ and $b_{j^{\prime}}$ are non-zero coefficients in $a(x)$ and $b(x)$ respectively. Then

$$
\begin{equation*}
a(x) b(x)=a_{i^{\prime}} b_{j^{\prime}} x^{i^{\prime}+j^{\prime}}+\{\text { higher order terms }\} \neq 0 \tag{6.1.2}
\end{equation*}
$$

since both $a_{i^{\prime}}, b_{j^{\prime}} \neq 0$. Hence $k[[x]]$ is also an integral domain.
We then want to show that (0), the principal ideal generated by $0 \in k[[x]]$, is a prime ideal. Suppose $p(x), q(x) \in k[[x]]$ are such that $p(x) q(x)=0$. Then since $k[[x]]$ is an integral domain from above, we have that either $p(x)=0$ or $q(x)=0$, hence (0) is a prime ideal.

We can also show that (x) is a prime ideal. Suppose $p(x), q(x) \in k[[x]]$ are such that $p(x) q(x)=a(x) \in(x)$, so we can write

$$
\begin{equation*}
p(x) q(x)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} p_{k} q_{n-k}\right) x^{n}=\sum_{n=1}^{\infty} a_{n} x^{n} \tag{6.1.3}
\end{equation*}
$$

specifically noting the sum on the right starts at $n=1$ since $a(x) \in(x)$. By comparison of terms (which uniquely defines a power series), this implies that the first term $p_{0} q_{0}$ of $p(x) q(x)$ must be 0 , hence either $p_{0}=0$ or $q_{0}=0$ since k is a field. In either case, this implies one of $p(x)$ or $q(x)$ is in (x), hence (x) is a prime ideal.

But are there any other prime ideals? We note that $k[[x]]$ is a principal ideal domain, so we only need to investigate other possible principal ideals. There are two obvious choices, and neither are prime ideals. An ideal of the form $\left(x^{n}\right)$ for $n \geq 2$ is not prime, with the trivial counterexample being: suppose $p(x) q(x)=x^{n} \in\left(x^{n}\right)$, then we could have $p(x)=x$ and $q(x)=x^{n-1}$ in $k[[x]]$, neither of which is in $\left(x^{n}\right)$ hence showing it is not prime - indeed, $\left(x^{n}\right) \subset(x)$.

We could also feasibly have ideals of the form $(x-a)$ for some $a \in k$, but by Rings Q9 we know that if a_{0} is a unit in its underlying ring then the formal power series $x-1$ is a unit. Clearly in our case $a_{0}=-a \in k$ is a unit since k is a field, meaning we just have $(x-a)=k[[x]]$, hence it is also not prime. Combining these two facts we see that there are no other prime ideals, thus

$$
\begin{equation*}
\text { Spec } k[[x]]=\{(0),(x)\} . \tag{6.1.4}
\end{equation*}
$$

With reference to [3].

Q3. Direct product to disjoint union

Let A_{1}, A_{2} be rings. Considering the direct product ring $A_{1} \times A_{2}$, we can write down the canonical projections

$$
\begin{align*}
\pi_{1}: A_{1} \times A_{2} & \rightarrow A_{1} & \pi_{2}: A_{1} \times A_{2} & \rightarrow A_{2} \tag{6.3.1}\\
\left(a_{1}, a_{2}\right) & \mapsto a_{1} & \left(a_{1}, a_{2}\right) & \mapsto a_{2} .
\end{align*}
$$

Clearly both of these maps are surjective which gives us an indication to analyse an induced map between spectra, which we can define as

$$
\begin{gather*}
\beta^{*}: \operatorname{Spec} A_{1} \amalg \operatorname{Spec} A_{2} \rightarrow \operatorname{Spec}\left(A_{1} \times A_{2}\right) \\
\beta^{*}((\mathfrak{p}, i))= \begin{cases}\pi_{1}^{-1}(\mathfrak{p}) & \text { if } i=1 \\
\pi_{2}^{-1}(\mathfrak{p}) & \text { if } i=2\end{cases} \tag{6.3.2}
\end{gather*}
$$

That β^{*} is a bijection largely comes down to determining what the elements of $\operatorname{Spec}\left(A_{1} \times A_{2}\right)$ are. We claim that these elements are of the form $\mathfrak{p}_{1} \times A_{2}$ or $A_{1} \times \mathfrak{p}_{2}$ for some prime ideals $\mathfrak{p}_{1} \in A_{1}$ or $\mathfrak{p}_{2} \in A_{2}$. Certainly these elements are indeed prime ideals: suppose $a_{1}, b_{1} \in \mathfrak{p}_{1}$ and $a_{2}, b_{2} \in A_{2}$ are such that

$$
\begin{equation*}
\left(a_{1}, a_{2}\right) \cdot\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}, a_{2} b_{2}\right) \in \mathfrak{p}_{1} \times A_{2} . \tag{6.3.3}
\end{equation*}
$$

Then $a_{1} \in \mathfrak{p}_{1}$ or $b_{1} \in \mathfrak{p}_{1}$, so either $\left(a_{1}, a_{2}\right) \in \mathfrak{p}_{1} \times A_{2}$ or $\left(b_{1}, b_{2}\right) \in \mathfrak{p}_{1} \times A_{2}$, hence $\mathfrak{p}_{1} \times A_{2}$ is a prime ideal (and obviously symmetry gives the alternative stated above).

Are there any others? Suppose $P \subset A_{1} \times A_{2}$ is a prime ideal. Let $e_{1}=(1,0)$ and $e_{2}=(0,1)$. Since P is a proper ideal, there is some nonzero element in P - suppose we have $e_{1} \notin P$. Then we have $e_{1} e_{2}=(0,0) \in P$ since P is a subgroup, but since P is prime, we must have $e_{2} \in P$. Since 1 is a unit in A_{2}, hence generates the whole ring A_{2}, we see that $0 \times A_{2} \subseteq P$ (since $(0,0)=0$ must be a subset of any prime ideal). Finally, it is obvious that $\pi_{1}(P)$ must be a prime ideal of A_{1}, say $\pi_{1}(P)=\mathfrak{p}_{1} \in A_{1}$, but also we must have $P=\pi_{1}(P) \times A_{2}$. Therefore $P=\mathfrak{p}_{1} \times A_{2}$ or $P=A_{1} \times \mathfrak{p}_{2}$ are the prime ideals of $A_{1} \times A_{2}$.

Suppose $\beta^{*}((\mathfrak{p}, i))=\beta^{*}\left(\left(\mathfrak{p}^{\prime}, i^{\prime}\right)\right)$ for prime ideals \mathfrak{p} and \mathfrak{p}^{\prime} in, say, A_{1} (which is clearly symmetric for A_{2}). Note that in order for this equality to make sense we must have $i=i^{\prime}$. Then

$$
\begin{equation*}
\pi_{1}^{-1}(\mathfrak{p})=\pi_{1}^{-1}\left(\mathfrak{p}^{\prime}\right), \quad \text { so } \mathfrak{p} \times A_{2}=\mathfrak{p}^{\prime} \times A_{2}, \quad \text { so } \mathfrak{p}=\mathfrak{p}^{\prime} \tag{6.3.4}
\end{equation*}
$$

so β^{*} is injective. Then let $\mathfrak{p} \in \operatorname{Spec}\left(A_{1} \times A_{2}\right)$. Thanks to our painstaking effort above, we know that $\mathfrak{p}=\mathfrak{p}_{1} \times A_{2}$ for some prime ideal $\mathfrak{p}_{1} \in A_{1}$ (and, as always, symmetric for the $i=2$ case). Then we can just take $\mathfrak{p}_{1} \in \operatorname{Spec}\left(A_{1}\right)$ as our element in the domain, hence

$$
\begin{equation*}
\beta^{*}\left(\left(\mathfrak{p}_{1}, 1\right)\right)=\pi_{1}^{-1}\left(\mathfrak{p}_{1}\right)=\mathfrak{p}_{1} \times A_{2}=\mathfrak{p}, \tag{6.3.5}
\end{equation*}
$$

and so β^{*} is also surjective, hence we have a well defined bijection and we are done.

With reference to [4].

References

[1] Abstract Algebra - Every non-unit is in some maximal ideal. URL: https://math.stackexchange.com/questions/938777/every-non-unit-is-in-some-maximal-ideal (visited on 08/20/2020).
[2] Abstract Algebra - Every prime ideal of height 1 in a UFD is principal. URL: https://math.stackexchange.com/questions/2548309/every-prime-ideal-of-height-1-in-a-ufd-is-principal (visited on 08/20/2020).
[3] Abstract Algebra - If R is an integral domain, then $R[[x]]$ is an integral domain. URL: https://math.stackexchange.com/questions/457447/if-r-is-an-integral-domain-then-rx-is-an-integral-domain (visited on 08/20/2020).
[4] Abstract Algebra - Prime ideals in a finite direct product of rings. URL: https://math.stackexchange.com/questions/1216203/prime-ideals-in-a-finite-direct-product-of-rings (visited on 08/20/2020).
[5] Category Theory - Morphism epimorphism if and only if surjective. URL: https://math.stackexchange.com/questions/1691666/morphism-epimorphism-if-and-only-if-surjective (visited on 08/20/2020).
[6] Comm. Algebra - The Jacobson Radical. URL: https://crypto.stanford.edu/pbc/notes/commalg/jacobson.html (visited on 08/20/2020).
[7] Exact sequence. en. Page Version ID: 970013709. July 2020. URL: https://en.wikipedia.org/w/index.php?title=Exact_sequence\&oldid= 970013709 (visited on 08/20/2020).
[8] Galois Theory - Homework 11 Solutions. 2012. URL: http://palmer. wellesley.edu/~ivolic/pdf/Classes/MATH306GaloisTheorySpring12/ Solutions/306Homework11Solutions.pdf.
[9] Height of an ideal - Encyclopedia of Mathematics. URL: https://encyclopediaofmath.org/wiki/Height_of_an_ideal (visited on 08/20/2020).
[10] Nilradical is an ideal - Commalg. URL: https://commalg.subwiki.org/wiki/Nilradical_is_an_ideal (visited on $08 / 20 / 2020$).
[11] Unique factorization domain. en. Page Version ID: 971664567. Aug. 2020. URL: https://en.wikipedia.org/w/index.php?title=Unique_ factorization_domain\&oldid=971664567 (visited on 08/20/2020).

Acknowledgement

With thanks to Spencer Wong and Caleb Smith for their useful discussions and helpful pointers along the way.

