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Q1. Boundary layers

Let 0 < ε� 1 and consider

εy′′ − y(y′ + y) = 0 , 0 < x < 1 , where y(0) = e , y(1) = 3 . (1.1)

Given that there is a boundary layer at x = 1, we want to find the outer, inner and
uniformly valid expansion to leading order.

Since there is a boundary layer at x = 1, we may start by making a simple change of
variables z = 1 − x, which gives d

dx = dz
dx

d
dz = − d

dz , so that we are now considering a
boundary layer at z = 0, and (1.1) becomes (where y = y(z))

εy′′ + yy′ − y2 = 0 , 0 < z < 1 , where y(0) = 3 , y(1) = e . (1.2)

We first consider the outer solution yout(z) =
∑∞

n=0 ε
nyn(z) = y0 + εy1 + . . . in the outer

region δ � z < 1, so substituting into (1.1) this gives

ε(y′′0 + εy′′1 + ε2y′′2 + . . . ) + (y0 + εy1 + ε2y2 + . . . )
(
(y′0 − y0) + ε(y′1 − y1) + ε2(y′2 − y2) + . . . ) = 0 ,

but since we are in the outer region, the leading order term will dominate, so we have
yout(z) ≈ y0(z), so by comparing orders we have

O(1) : y0(y′0 − y0) = 0 , so y0 = 0 or y′0 − y0 = 0 .

The first solution is trivial and gives no boundary layer, meaning we must be in the
situation of y′0 = y0, so y0 = Aez. Using y(1) = e away from the boundary layer, this gives

yout(z) = y0(z) = ez = e1−x . (1.3)

For the inner solution, we start by stretching the region to z = δZ, so d
dz = 1

δ
d
dZ , which

turns our equation (1.2) into (where yin(z) = Yin(Z)),

ε

δ2
Y ′′in +

1

δ
YinY

′
in − Y 2

in = 0 for δ → 0 . (1.4)

We can then apply a dominant balance argument: first suppose δ � ε, so ε
δ2
� 1

δ � 1,
which gives Y ′′in = 0 so Yin(Z) = AZ + B, but this diverges as Z → ∞ so it couldn’t be
matched. If δ � ε, so ε

δ �
1
δ � 1, this would give the 1

δYinY
′

in term dominating, giving
Yin = 0 or Yin = Z, both of which cannot be matched. Therefore we must have δ = ε and
so (1.4) becomes

1

ε
Y ′′in +

1

ε
YinY

′
in − Y 2

in = 0 . (1.5)
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Letting Yin(Z) =
∑∞

n=0 ε
nYn = Y0 + εY1 + . . . , we have

1

ε
(Y ′′0 + εY ′′1 + ε2Y ′′2 + . . . ) +

1

ε
(Y ′0 + εY ′1 + ε2Y ′2 + . . . )(Y0 + εY1 + ε2Y2 + . . . )

−(Y0 + εY1 + ε2Y2 + . . . )2 = 0 . (1.6)

We only need to consider the O(1
ε ) term in the leading order as ε→ 0, so we have

O

(
1

ε

)
: Y ′′0 + Y ′0Y0 = 0 . (1.7)

To solve the O(1
ε ) equation, we note the identity d

dxy(x)2 = 2y′y, so integrating both sides
we have ∫

(Y ′′0 + Y ′0Y0)dZ = Y ′0 +
1

2
Y 2

0 − C = 0 ,

so

∫
1

C − 1
2Y

2
0

dY0 =

∫
dZ , so

√
2√
C

arctanh

(
Y0√
2C

)
= Z +A .

Letting B =
√

2C we can rearrange this to get

Y0(Z) = B tanh

(
B

2
(Z +A)

)
(1.8)

for some constants A and B. We can then apply the boundary condition at the boundary
layer (which must be valid for the highest order term), y(0) = 3, to see

3 = B tanh

(
AB

2

)
= B

eAB − 1

eAB + 1
,

so (3−B)eAB + (3 +B) = 0 , so A =
1

B
log

(
B + 3

B − 3

)
.

Using the identity tanh(x+ y) = tanhx+tanh y
1+tanhx tanh y , we can thus rewrite (1.8) as

Y0(Z) = B

tanh
(
B
2 Z
)

+ tanh

(
1
2 log

(
B+3
B−3

))
1 + tanh

(
B
2 Z
)

tanh

(
1
2 log

(
B+3
B−3

)) =
B2 tanh

(
B
2 Z
)

+ 3B

B + 3 tanh
(
B
2 Z
) , (1.9)

where in the second equality we used the following simple calculation:

tanh

(
1

2
log

(
B + 3

B − 3

))
=

B+3
B−3 − 1
B+3
B−3 + 1

=
B + 3−B + 3

B + 3 +B − 3
=

3

B
.

To determine B we want to use the matching condition limZ→∞ Yin(Z) = limz→0 yout.
Noting that limx→∞ tanh(kx) = sign(k) (i.e. +1 if k > 0 and −1 if k < 0) we have

lim
Z→∞

Yin(Z) =
B2sign(B) + 3B

B + 3sign(B)
= 1 = lim

z→0
yout , so B = ±1 . (1.10)

Either option will give the same solution so we can take B = 1 for simplicity. Therefore,

Yin(Z) =
tanh

(
1
2Z
)

+ 3

3 tanh
(

1
2Z
)

+ 1
=

2eZ + 1

2eZ − 1
=

2e
z
ε + 1

2e
z
ε − 1

. (1.11)

Using the fact that ymatch = limz→0 yout = 1 and recalling that z = 1− x, we finally have

yunif(x) = yout(x) + yin(x)− ymatch = e1−x +
2e

1−x
ε + 1

2e
1−x
ε − 1

− 1 . (1.12)

It is easily verified that this satisfies the desired properties and so we are done.
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Q2. Internal boundary layer

Consider

εy′′ + (x2 − 1

4
)y′ = 0 , 0 < x < 1 , where y(0) = 1, y(1) = −1 . (2.1)

Part a)

Denoting a(x) = x2 − 1
4 = (x − 1

2)(x + 1
2), we see that a(1

2) = 0 (note that −1
2 /∈ (0, 1)),

meaning that there is a singularity of the ODE at x = 1
2 . In such a region a(x) ∼ O(ε)

meaning there can be rapid changes in y′′, hence meaning we must go through a boundary
layer at x = 1

2 by the remarks in W7 (page 6) of the lecture notes.

Part b)

First consider the region x < 1
2 , where we set yout(x) = y0(x) + εy1(x) + . . . , then we have

ε
(
y′′0 + εy′′1 + . . .

)
+ a(x)

(
y′0 + εy′1 + . . .

)
= 0 , (2.2)

so to leading order (i.e. analysing the O(1) terms) we see that

a(x)y′0 = 0 , so y0(x) = C− ,

for some constant C−, and so applying y(0) = 1 we have y0(x) = 1. Since this is an outer
solution, we only consider O(1) terms as O(ε) is very small in this region, so we have
yout(x) = 1 for x < 1

2 .

Performing an identical analysis with the same expansion as in (2.2), shows that for
x > 1

2 we must have y0(x) = C+ for some constant C+, hence applying y(1) = −1 we have
y0(x) = −1, so yout(x) = −1 for x > 1

2 .

Part c)

To determine the inner solution about x = 1
2 we will make a change of variables z = x− 1

2
to simplify our analysis to have a boundary layer z = 0, still in the interior of the domain.
Noting that d

dx = d
dz , (2.1) becomes

εy′′ + z(z + 1)y′ = 0 , −1

2
< z <

1

2
, where y(−1

2
) = 1, y(

1

2
) = −1 , (2.3)

where we denote a(z) = z(z + 1). Now let z = δZ (so d
dz = 1

δ
d
dZ and yin(z) = Yin(Z)),

then (2.3) becomes

ε

δ2
Y ′′in +

a(δZ)

δ
Y ′in = 0 .

Since we are near a boundary layer, we may write a(z) ≈ a′(0)z as z → 0 and calculate
a′(z) = 2z + 1 so a′(0) = 1, so a(δZ) ≈ δZ and our equation becomes

ε

δ2
Y ′′in + ZY ′in = 0 . (2.4)

We may then perform a dominant balance. First suppose δ � ε which implies ε
δ2
� 1

δ � 1
which gives a dominant Y ′′in term, so Yin(Z) = AZ+B for some constant A and B. But then
limZ→∞ Yin =∞, so we couldn’t match and so this can’t be the balance. Alternatively, if
δ � ε, then ε

δ � 1, meaning the ZY ′in term dominates and so Yin = A for some constant A.
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But then we again cannot match the inner and outer solutions at Z →∞ unless A = ±1
(depending on the region), at which point there would be no boundary layer. Thus we
must have ε

δ2
∼ 1, so our equation becomes

Y ′′in + ZY ′in = 0 . (2.5)

We can then solve this by introducing the integrating factor of I = exp
(∫
ZdZ

)
=

exp
(

1
2Z

2
)

, so

d

dZ
(e

1
2
Z2
Y ′in) = 0 , so Y ′in(Z) = Ce−

1
2
Z2
, so Yin(Z) = C

∫ Z

0
e−

1
2
t2dt . (2.6)

To solve for C we need to impose the matching condition limZ→±∞ Yin(Z) = limz→0± yout,

but this will be different in the different regions. We note the identity
∫∞

0 e−
1
2
t2dt =

√
π
2 .

Then for z < 0 (i.e. x < 1
2) where yout(z) = 1 we solve limZ→−∞ Yin(Z) = limz→0+ yout(z),

so

C−

∫ −∞
0

e−
1
2
t2dt = 1 , so Yin(Z) = −

√
2

π

∫ Z

0
e−

1
2
t2dt for Z < 0 . (2.7)

Similarly, for z > 0 we have yout(z) = −1 so C+ = −
√

2
π and so

Yin(Z) = −
√

2

π

∫ Z

0
e−

1
2
t2dt for Z > 0 . (2.8)

Part d)

To find the uniformly valid solution we define ymatch(z) = limz→0 yout(z), which in both
cases gives us ymatch(z) = yout since yout is a constant. We see that in writing yunif =
yin + yout − ymatch = yin, and noting that Yin(Z) is the same in both cases from (2.7) and
(2.8), for all z ∈ R (i.e. all x ∈ R) we have a uniformly valid expansion to leading order of

yunif(Z) = −
√

2

π

∫ Z

0
e−

1
2
t2dt = −

√
2

π

∫ x− 1
2

ε

0
e−

1
2
t2dt = yunif(x) . (2.9)

We note that this is, up to rescaling, the so-called error function (Gaussian CDF), which
for small ε will be very steep around the boundary layer x = 1

2 .
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Q3. WKB analysis

Consider

ε2y′′ + (1 + x)4y = 0 , for x > 0 . (3.1)

We want to perform WKB analysis on this equation.

Part a)

We first note that in writing Q(x) = −(1 + x)4 we have Schrödinger’s equation ε2y′′ =
Q(x)y. We start by assuming y has the form

y ∼ exp

1

δ

∞∑
n=0

δnSn(x)

 ,
so y′ ∼

1

δ

∞∑
n=0

δnS′n(x)

 exp

1

δ

∞∑
n=0

δnSn(x)

 ,
so y′′ ∼

1

δ

∞∑
n=0

δnS′′n(x) +
1

δ2

 ∞∑
n=0

δnSn(x)

2
 exp

1

δ

∞∑
n=0

δnSn(x)

 . (3.2)

Using the Cauchy product expansion we can write the coefficient of the exponential in y′′

as

1

δ2
S′20 +

1

δ
(2S′0S

′
1 + S′′0 ) + (S′′1 + S′21 + 2S′0S

′
2) +O(δ) .

So, substituting these equations into (3.1) and dividing by the exponential, we have

ε2

δ2
S′20 +

ε2

δ
(2S′0S

′
1 + S′′0 ) + ε2(S′′1 + S′21 + 2S′0S

′
2) + ε2O(δ) = Q(x) . (3.3)

We may then perform a dominant balance analysis to determine δ(ε). Let T1, T2 and

T3 denote the terms associated to ε2

δ , ε2

δ and 1 (i.e. Q(x)) respectively (we can safely
ignore O(ε2) terms as ε → 0). First assume that T1 � T2 ∼ T3, so δ = ε2, giving
1
ε2
S′20 � 2S′0S

′
1 + S′′0 ∼ Q(x). But then as ε → 0 the left hand side of this will go to ∞,

which contradicts the fact that it is much less than Q(x) which does not diverge, thus

giving a contradiction. If we then suppose T3 � T1 ∼ T2, this would imply ε2

δ2
= ε2

δ , so
δ = 1. But then all terms on the left hand side of (3.3) go to 0 as ε→ 0, which contradicts
Q(x)� T1,T2 hence we have another contradiction.

Therefore, dominant balance tells us that ε2

δ2
must have the same order of magnitude

as Q(x), so δ is proportional to ε so we may just take δ = ε. We then have the first few
orders as

O(1) : S′20 = −(1 + x)4 ,

O(ε) : 2S′0S
′
1 + S′′0 = 0 , (3.4)

O(ε2) : S′′1 + S′21 + 2S′0S
′
2 = 0 .

Hence we can solve S′0 = ±i(1 + x)2, so

S0(x) =

∫
±i(1 + x)2dx = ± i

3
(x+ 1)3 + C± . (3.5)
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The leading order solution is considered to be all non-negligible terms in the limit ε→ 0,
meaning we want to solve the O(ε) equation as well. Since S′0 = ±i(1 + x)2 from before,
meaning S′′0 = ±2i(1 + x), we have (noting that x+ 1 > 0 so log |x+ 1| = log(x+ 1)),

2S′0S
′
1 + S′′0 = ±2i(1 + x)2S′1 ± 2i(1 + x) = 0 ,

so S1 =

∫
− 1

x+ 1
dx = − log(x+ 1) +D± .

Noting that our two possible solutions for S0(x) are linearly independent solutions (giving
us a sum of exponentials in the final solution) and writing C1 = exp(1

εC+ + D+) and
C2 = exp(1

εC− +D−), we have the leading order solution

y(x) ∼ C1

x+ 1
exp

[
i

3ε
(1 + x)3

]
+

C2

x+ 1
exp

[
− i

3ε
(1 + x)3

]
. (3.6)

We note that the presence of the i in the exponential will give periodic solutions (ultimately
due to the fact that Q(x) < 0 for all x), but it is more convenient to leave it in exponential
form for the moment.

Part b)

We can then impose the boundary conditions y(0) = 0 and y′(0) = 1. The first one gives
us

0 = C1e
i
3ε + C2e

− i
3ε . (3.7)

For f(x) = A
x+1 exp

[
k(1 + x)3

]
where k and A are some constants, we have

f ′(x) =
A

(x+ 1)2

(
3k(x+ 1)3 − 1

)
ek(1+x)3 ,

so y′(x) =
C1

(x+ 1)2

(
i

ε
(x+ 1)3 − 1

)
e

i
3ε

(1+x)3 − C2

(x+ 1)2

(
i

ε
(x+ 1)3 + 1

)
e−

i
3ε

(1+x)3 .

Hence applying our second condition we have

1 = C1

(
i

ε
− 1

)
e

i
3ε − C2

(
i

ε
+ 1

)
e−

i
3ε = C1

(
i

ε
− 1

)
e

i
3ε + C1

(
i

ε
+ 1

)
e

i
3ε =

2C1i

ε
e

i
3ε ,

where we used (3.7) in the second equality. Rearranging we find that

C1 =
ε

2i
e−

i
3ε , so C2 = − ε

2i
e

i
3ε , (3.8)

which gives a leading order solution of

y(x) ∼ ε

2i(x+ 1)
e

i
3ε

(
(x+1)3−1

)
− ε

2i(x+ 1)
e−

i
3ε

(
(x+1)3−1

)
=

ε

i(x+ 1)
sinh

(
i

3ε

(
(x+ 1)3 − 1

))
,

which, using the fact that sinh(ix) = i sin(x), finally simplifies to

y(x) ∼ ε

(x+ 1)
sin

(
(x+ 1)3 − 1

3ε

)
. (3.9)
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Part c)

To determine the region of validity of the WKB approximation, we first want to solve for
S2 in the O(ε2) equation of (3.4), which gives

0 = S′′1 + S′21 + 2S′0S
′
2 =

1

(x+ 1)2
+

1

(x+ 1)2
± 2i(x+ 1)2S′2 ,

so S′2 = ∓1

i
(x+ 1)−4 , so S2 = ± 1

3i

1

(x+ 1)3
+ E± . (3.10)

We know from lectures that our leading order WKB approximation is valid on some
interval I ⊆ R if the following two conditions are met (where δ = ε):

εS2 � S1 �
1

ε
S0 , and εS2 � 1 , as ε→ 0 . (3.11)

When performing such asymptotic calculations we may discard coefficients of Si terms
(we only care about the x behaviour) and arbitrary constants C±, D±, E± as they are also
negligible in the asymptotic expansions. Thus our first condition is

ε
1

(x+ 1)3
≈ εS2 � S1 ≈ log(x+ 1) ,

and so letting x+ 1 = εα for some α ∈ R we require

ε� αε3α log ε , so 1� αε3α−1 log ε , so 3α− 1 < 0 , so α <
1

3
(3.12)

meaning our first requirement is x + 1 � ε
1
3 . Note that the conclusion that 3α − 1 < 0

follows from the requirement that αε3α−1 log ε be much greater than 1 for small ε. Next
we have

log(x+ 1) ≈ S1 �
1

ε
S0 ≈

1

ε
(x+ 1)3 , (3.13)

so again taking x+ 1 = εα this gives

1� ε3α−1

α log ε
(3.14)

which is true for any value of α. Our final condition gives

ε
1

(x+ 1)3
� 1 , so x+ 1� ε

1
3 , (3.15)

which we note is the same as the first condition above. Therefore the WKB leading order
approximation is valid for x+ 1� O(ε1/3).
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Q4. Multiple time scales

Consider y(t) satisfying the equation

ÿ + y + εyẏ2 = 0 , t > 0 , y(0) = 0 , ẏ(0) = 1 . (4.1)

We want to use the method of multiple time scales, with T0 = t and T1 = τ = εt to
determine the leading order term of the uniformly valid asymptotic expansion of y(t).

We begin by assuming

y(t) = Y (t, τ) =
∞∑
n=0

εnYn(t, τ) = Y0(t, τ) + εY1(t, τ) + ε2Y2(t, τ) + . . .

with Y (0, 0) = 0 , and
∂Y0

∂t

∣∣∣∣
(0,0)

= 1 , (4.2)

which gives derivatives of

dy

dt
=
∂Y0

∂t
+ ε

(
∂Y0

∂τ
+
∂Y1

∂t

)
+O(ε2) , (4.3)

and
d2y

dt2
=
∂2Y0

∂t2
+ ε

(
2
∂2Y0

∂t∂τ
+
∂2Y1

∂t2

)
+O(ε2) .

Substituting these into (4.1), we have (neglecting higher order terms since we are only
interested in the leading order)

0 =
∂2Y0

∂t2
+ ε

(
2
∂2Y0

∂t∂τ
+
∂2Y1

∂t2

)
+ Y0 + εY1 + ε (Y0 + εY1)

(
∂Y0

∂t
+ ε

(
∂Y0

∂τ
+
∂Y1

∂t

))2

+O(ε2)

=

(
∂2Y0

∂t2
+ Y0

)
+ ε

(
2
∂2Y0

∂t∂τ
+
∂2Y1

∂t2
+ Y1 + Y0

(
∂Y0

∂t

)2
)

+O(ε2) . (4.4)

Thus our O(1) equation is

∂2Y0

∂t2
+ Y0 = 0 , so Y0 = A(τ)eit +A(τ)e−it (4.5)

for some function A = A(τ) where A denotes the conjugate, since Y0 is a real function.
Then, our O(ε) equation is

∂2Y1

∂t2
+ Y1 = −2

∂2Y0

∂t∂τ
− Y0

(
∂Y0

∂t

)2

= −2
(
A′(τ)ieit −A′(τ)ie−it

)
−
(
A(τ)eit +A(τ)e−it

)(
i
(
A(τ)eit −A(τ)e−it

))2

=
(
− 2iA′ −A2A

)
eit +

(
2iA

′ −AA2)
e−it +A3e3it +A

3
e−3it . (4.6)

The homogeneous solution of this equation is

Y1,hom(t) = B(τ)eit +B(τ)e−it , (4.7)

which has a frequency of 1, which suggests that the e±it terms in (4.6) will cause secular
solutions. Thus, to avoid secular solutions we require A(τ) to be such that

2iA′(τ) +A2(τ)A(τ) = 0 , and 2iA
′
(τ)−A(τ)A

2
(τ) = 0 , (4.8)
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where the second equation is the complex conjugate of the first so we just require a solution
to the first equation. To do this we apply a separation of variables technique (in some
sense) and let

A(τ) = R(τ)eiΘ(τ) , so
dA

dτ
= (R′ + iRΘ′)eiΘ , (4.9)

for some real functions R and Θ. Substituting this into the above we have

2i(R′ + iRΘ′)eiΘ + (R2e2iΘ)(Re−iΘ) = (2iR′ − 2RΘ′ +R3)eiΘ = 0 .

After dividing by eiΘ, the real part of the equation gives

−2RΘ′ +R3 = 0 , so Θ′(τ) =
1

2
R2 ,

and the imaginary part gives 2iR′(τ) = 0, so

R(τ) = R(0) , and Θ(τ) =
1

2
R(0)2τ + Θ(0) ,

so we finally have

A(τ) = R(0)ei(
1
2
R(0)2τ+Θ(0)) . (4.10)

We can hence write Y0 as

Y0(t) = R(0)ei(
1
2
R(0)2τ+Θ(0)+t) +R(0)e−i(

1
2
R(0)2τ+Θ(0)+t)

= 2R(0) cos

(
1

2
R(0)2τ + Θ(0) + t

)
. (4.11)

Applying our boundary conditions in (4.2) we have

Y0(0, 0) = 2R(0) cos
(
Θ(0)

)
= 0 , and

∂Y0

∂t

∣∣∣∣
(0,0)

= −2R(0) sin
(
Θ(0)

)
= 1 ,

which thus gives (noting that the non-uniqueness of Θ(0) is ultimately not problematic as
it has the same effect in (4.13))

Θ(0) =
π

2
, and R(0) = −1

2
. (4.12)

Plugging this into (4.11), using τ = εt and the fact that cos(x+ π/2) = − sin(x), we have

Y0(t) = − cos

(
1

8
τ +

π

2
+ t

)
= sin

((
1 +

1

8
ε

)
t

)
. (4.13)

Therefore our leading order solution is

y(t) = sin

((
1 +

1

8
ε

)
t

)
+O(ε) , as ε→ 0+ , εt = O(1) . (4.14)

We see that the period is T ∼ 1
1+ 1

8
ε
∼ 1 − 1

8ε where the second equality uses the Taylor

expansion of 1
1+ε for small ε.
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