Advanced Methods Differential Equations Assignment 2

Liam Carroll - 830916

Due Date: $26^{\text {th }}$ May 2021

Q1. Boundary layers

Let $0<\varepsilon \ll 1$ and consider

$$
\begin{equation*}
\varepsilon y^{\prime \prime}-y\left(y^{\prime}+y\right)=0, \quad 0<x<1, \quad \text { where } \quad y(0)=e, y(1)=3 . \tag{1.1}
\end{equation*}
$$

Given that there is a boundary layer at $x=1$, we want to find the outer, inner and uniformly valid expansion to leading order.

Since there is a boundary layer at $x=1$, we may start by making a simple change of variables $z=1-x$, which gives $\frac{d}{d x}=\frac{d z}{d x} \frac{d}{d z}=-\frac{d}{d z}$, so that we are now considering a boundary layer at $z=0$, and (1.1) becomes (where $y=y(z)$)

$$
\begin{equation*}
\varepsilon y^{\prime \prime}+y y^{\prime}-y^{2}=0, \quad 0<z<1, \quad \text { where } \quad y(0)=3, \quad y(1)=e . \tag{1.2}
\end{equation*}
$$

We first consider the outer solution $y_{\text {out }}(z)=\sum_{n=0}^{\infty} \varepsilon^{n} y_{n}(z)=y_{0}+\varepsilon y_{1}+\ldots$ in the outer region $\delta \ll z<1$, so substituting into (1.1) this gives
$\varepsilon\left(y_{0}^{\prime \prime}+\varepsilon y_{1}^{\prime \prime}+\varepsilon^{2} y_{2}^{\prime \prime}+\ldots\right)+\left(y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2}+\ldots\right)\left(\left(y_{0}^{\prime}-y_{0}\right)+\varepsilon\left(y_{1}^{\prime}-y_{1}\right)+\varepsilon^{2}\left(y_{2}^{\prime}-y_{2}\right)+\ldots\right)=0$,
but since we are in the outer region, the leading order term will dominate, so we have $y_{\text {out }}(z) \approx y_{0}(z)$, so by comparing orders we have

$$
O(1): \quad y_{0}\left(y_{0}^{\prime}-y_{0}\right)=0, \quad \text { so } \quad y_{0}=0 \text { or } y_{0}^{\prime}-y_{0}=0 .
$$

The first solution is trivial and gives no boundary layer, meaning we must be in the situation of $y_{0}^{\prime}=y_{0}$, so $y_{0}=A e^{z}$. Using $y(1)=e$ away from the boundary layer, this gives

$$
\begin{equation*}
y_{\text {out }}(z)=y_{0}(z)=e^{z}=e^{1-x} . \tag{1.3}
\end{equation*}
$$

For the inner solution, we start by stretching the region to $z=\delta Z$, so $\frac{d}{d z}=\frac{1}{\delta} \frac{d}{d Z}$, which turns our equation (1.2) into (where $y_{\text {in }}(z)=Y_{\text {in }}(Z)$),

$$
\begin{equation*}
\frac{\varepsilon}{\delta^{2}} Y_{\mathrm{in}}^{\prime \prime}+\frac{1}{\delta} Y_{\mathrm{in}} Y_{\mathrm{in}}^{\prime}-Y_{\mathrm{in}}^{2}=0 \quad \text { for } \quad \delta \rightarrow 0 \tag{1.4}
\end{equation*}
$$

We can then apply a dominant balance argument: first suppose $\delta \ll \varepsilon$, so $\frac{\varepsilon}{\delta^{2}} \gg \frac{1}{\delta} \gg 1$, which gives $Y_{\text {in }}^{\prime \prime}=0$ so $Y_{\text {in }}(Z)=A Z+B$, but this diverges as $Z \rightarrow \infty$ so it couldn't be matched. If $\delta \gg \varepsilon$, so $\frac{\varepsilon}{\delta} \ll \frac{1}{\delta} \ll 1$, this would give the $\frac{1}{\delta} Y_{\text {in }} Y_{\text {in }}^{\prime}$ term dominating, giving $Y_{\text {in }}=0$ or $Y_{\text {in }}=Z$, both of which cannot be matched. Therefore we must have $\delta=\varepsilon$ and so (1.4) becomes

$$
\begin{equation*}
\frac{1}{\varepsilon} Y_{\mathrm{in}}^{\prime \prime}+\frac{1}{\varepsilon} Y_{\mathrm{in}} Y_{\mathrm{in}}^{\prime}-Y_{\mathrm{in}}^{2}=0 \tag{1.5}
\end{equation*}
$$

Letting $Y_{\text {in }}(Z)=\sum_{n=0}^{\infty} \varepsilon^{n} Y_{n}=Y_{0}+\varepsilon Y_{1}+\ldots$, we have

$$
\begin{array}{r}
\frac{1}{\varepsilon}\left(Y_{0}^{\prime \prime}+\varepsilon Y_{1}^{\prime \prime}+\varepsilon^{2} Y_{2}^{\prime \prime}+\ldots\right)+\frac{1}{\varepsilon}\left(Y_{0}^{\prime}+\varepsilon Y_{1}^{\prime}+\varepsilon^{2} Y_{2}^{\prime}+\ldots\right)\left(Y_{0}+\varepsilon Y_{1}+\varepsilon^{2} Y_{2}+\ldots\right) \\
-\left(Y_{0}+\varepsilon Y_{1}+\varepsilon^{2} Y_{2}+\ldots\right)^{2}=0 . \tag{1.6}
\end{array}
$$

We only need to consider the $O\left(\frac{1}{\varepsilon}\right)$ term in the leading order as $\varepsilon \rightarrow 0$, so we have

$$
\begin{equation*}
O\left(\frac{1}{\varepsilon}\right): \quad Y_{0}^{\prime \prime}+Y_{0}^{\prime} Y_{0}=0 \tag{1.7}
\end{equation*}
$$

To solve the $O\left(\frac{1}{\varepsilon}\right)$ equation, we note the identity $\frac{d}{d x} y(x)^{2}=2 y^{\prime} y$, so integrating both sides we have

$$
\begin{gathered}
\int\left(Y_{0}^{\prime \prime}+Y_{0}^{\prime} Y_{0}\right) d Z=Y_{0}^{\prime}+\frac{1}{2} Y_{0}^{2}-C=0 \\
\text { so } \quad \int \frac{1}{C-\frac{1}{2} Y_{0}^{2}} d Y_{0}=\int d Z, \quad \text { so } \frac{\sqrt{2}}{\sqrt{C}} \operatorname{arctanh}\left(\frac{Y_{0}}{\sqrt{2 C}}\right)=Z+A .
\end{gathered}
$$

Letting $B=\sqrt{2 C}$ we can rearrange this to get

$$
\begin{equation*}
Y_{0}(Z)=B \tanh \left(\frac{B}{2}(Z+A)\right) \tag{1.8}
\end{equation*}
$$

for some constants A and B. We can then apply the boundary condition at the boundary layer (which must be valid for the highest order term), $y(0)=3$, to see

$$
\begin{gathered}
3=B \tanh \left(\frac{A B}{2}\right)=B \frac{e^{A B}-1}{e^{A B}+1} \\
\text { so }(3-B) e^{A B}+(3+B)=0, \quad \text { so } \quad A=\frac{1}{B} \log \left(\frac{B+3}{B-3}\right) .
\end{gathered}
$$

Using the identity $\tanh (x+y)=\frac{\tanh x+\tanh y}{1+\tanh x \tanh y}$, we can thus rewrite (1.8) as

$$
\begin{equation*}
Y_{0}(Z)=B \frac{\tanh \left(\frac{B}{2} Z\right)+\tanh \left(\frac{1}{2} \log \left(\frac{B+3}{B-3}\right)\right)}{1+\tanh \left(\frac{B}{2} Z\right) \tanh \left(\frac{1}{2} \log \left(\frac{B+3}{B-3}\right)\right)}=\frac{B^{2} \tanh \left(\frac{B}{2} Z\right)+3 B}{B+3 \tanh \left(\frac{B}{2} Z\right)} \tag{1.9}
\end{equation*}
$$

where in the second equality we used the following simple calculation:

$$
\tanh \left(\frac{1}{2} \log \left(\frac{B+3}{B-3}\right)\right)=\frac{\frac{B+3}{B-3}-1}{\frac{B+3}{B-3}+1}=\frac{B+3-B+3}{B+3+B-3}=\frac{3}{B} .
$$

To determine B we want to use the matching condition $\lim _{Z \rightarrow \infty} Y_{\text {in }}(Z)=\lim _{z \rightarrow 0} y_{\text {out }}$. Noting that $\lim _{x \rightarrow \infty} \tanh (k x)=\operatorname{sign}(k)$ (i.e. +1 if $k>0$ and -1 if $k<0$) we have

$$
\begin{equation*}
\lim _{Z \rightarrow \infty} Y_{\text {in }}(Z)=\frac{B^{2} \operatorname{sign}(B)+3 B}{B+3 \operatorname{sign}(B)}=1=\lim _{z \rightarrow 0} y_{\text {out }}, \quad \text { so } B= \pm 1 . \tag{1.10}
\end{equation*}
$$

Either option will give the same solution so we can take $B=1$ for simplicity. Therefore,

$$
\begin{equation*}
Y_{\mathrm{in}}(Z)=\frac{\tanh \left(\frac{1}{2} Z\right)+3}{3 \tanh \left(\frac{1}{2} Z\right)+1}=\frac{2 e^{Z}+1}{2 e^{Z}-1}=\frac{2 e^{\frac{z}{\varepsilon}}+1}{2 e^{\frac{z}{\varepsilon}}-1} . \tag{1.11}
\end{equation*}
$$

Using the fact that $y_{\text {match }}=\lim _{z \rightarrow 0} y_{\text {out }}=1$ and recalling that $z=1-x$, we finally have

$$
\begin{equation*}
y_{\text {unif }}(x)=y_{\text {out }}(x)+y_{\text {in }}(x)-y_{\text {match }}=e^{1-x}+\frac{2 e^{\frac{1-x}{\varepsilon}}+1}{2 e^{\frac{1-x}{\varepsilon}}-1}-1 . \tag{1.12}
\end{equation*}
$$

It is easily verified that this satisfies the desired properties and so we are done.

Q2. Internal boundary layer

Consider

$$
\begin{equation*}
\varepsilon y^{\prime \prime}+\left(x^{2}-\frac{1}{4}\right) y^{\prime}=0, \quad 0<x<1, \quad \text { where } \quad y(0)=1, \quad y(1)=-1 . \tag{2.1}
\end{equation*}
$$

Part a)

Denoting $a(x)=x^{2}-\frac{1}{4}=\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)$, we see that $a\left(\frac{1}{2}\right)=0$ (note that $-\frac{1}{2} \notin(0,1)$), meaning that there is a singularity of the ODE at $x=\frac{1}{2}$. In such a region $a(x) \sim O(\varepsilon)$ meaning there can be rapid changes in $y^{\prime \prime}$, hence meaning we must go through a boundary layer at $x=\frac{1}{2}$ by the remarks in W7 (page 6) of the lecture notes.

Part b)

First consider the region $x<\frac{1}{2}$, where we set $y_{\text {out }}(x)=y_{0}(x)+\varepsilon y_{1}(x)+\ldots$, then we have

$$
\begin{equation*}
\varepsilon\left(y_{0}^{\prime \prime}+\varepsilon y_{1}^{\prime \prime}+\ldots\right)+a(x)\left(y_{0}^{\prime}+\varepsilon y_{1}^{\prime}+\ldots\right)=0, \tag{2.2}
\end{equation*}
$$

so to leading order (i.e. analysing the $O(1)$ terms) we see that

$$
a(x) y_{0}^{\prime}=0, \quad \text { so } \quad y_{0}(x)=C_{-},
$$

for some constant C_{-}, and so applying $y(0)=1$ we have $y_{0}(x)=1$. Since this is an outer solution, we only consider $O(1)$ terms as $O(\varepsilon)$ is very small in this region, so we have $y_{\text {out }}(x)=1$ for $x<\frac{1}{2}$.

Performing an identical analysis with the same expansion as in (2.2), shows that for $x>\frac{1}{2}$ we must have $y_{0}(x)=C_{+}$for some constant C_{+}, hence applying $y(1)=-1$ we have $y_{0}(x)=-1$, so $y_{\text {out }}(x)=-1$ for $x>\frac{1}{2}$.

Part c)

To determine the inner solution about $x=\frac{1}{2}$ we will make a change of variables $z=x-\frac{1}{2}$ to simplify our analysis to have a boundary layer $z=0$, still in the interior of the domain. Noting that $\frac{d}{d x}=\frac{d}{d z},(2.1)$ becomes

$$
\begin{equation*}
\varepsilon y^{\prime \prime}+z(z+1) y^{\prime}=0, \quad-\frac{1}{2}<z<\frac{1}{2}, \quad \text { where } \quad y\left(-\frac{1}{2}\right)=1, \quad y\left(\frac{1}{2}\right)=-1, \tag{2.3}
\end{equation*}
$$

where we denote $a(z)=z(z+1)$. Now let $z=\delta Z$ (so $\frac{d}{d z}=\frac{1}{\delta} \frac{d}{d Z}$ and $y_{\text {in }}(z)=Y_{\text {in }}(Z)$), then (2.3) becomes

$$
\frac{\varepsilon}{\delta^{2}} Y_{\mathrm{in}}^{\prime \prime}+\frac{a(\delta Z)}{\delta} Y_{\mathrm{in}}^{\prime}=0
$$

Since we are near a boundary layer, we may write $a(z) \approx a^{\prime}(0) z$ as $z \rightarrow 0$ and calculate $a^{\prime}(z)=2 z+1$ so $a^{\prime}(0)=1$, so $a(\delta Z) \approx \delta Z$ and our equation becomes

$$
\begin{equation*}
\frac{\varepsilon}{\delta^{2}} Y_{\mathrm{in}}^{\prime \prime}+Z Y_{\mathrm{in}}^{\prime}=0 . \tag{2.4}
\end{equation*}
$$

We may then perform a dominant balance. First suppose $\delta \ll \varepsilon$ which implies $\frac{\varepsilon}{\delta^{2}} \gg \frac{1}{\delta} \gg 1$ which gives a dominant $Y_{\text {in }}^{\prime \prime}$ term, so $Y_{\text {in }}(Z)=A Z+B$ for some constant A and B. But then $\lim _{Z \rightarrow \infty} Y_{\text {in }}=\infty$, so we couldn't match and so this can't be the balance. Alternatively, if $\delta \gg \varepsilon$, then $\frac{\varepsilon}{\delta} \ll 1$, meaning the $Z Y_{\text {in }}^{\prime}$ term dominates and so $Y_{\text {in }}=A$ for some constant A.

But then we again cannot match the inner and outer solutions at $Z \rightarrow \infty$ unless $A= \pm 1$ (depending on the region), at which point there would be no boundary layer. Thus we must have $\frac{\varepsilon}{\delta^{2}} \sim 1$, so our equation becomes

$$
\begin{equation*}
Y_{\mathrm{in}}^{\prime \prime}+Z Y_{\mathrm{in}}^{\prime}=0 . \tag{2.5}
\end{equation*}
$$

We can then solve this by introducing the integrating factor of $I=\exp \left(\int Z d Z\right)=$ $\exp \left(\frac{1}{2} Z^{2}\right)$, so

$$
\begin{equation*}
\frac{d}{d Z}\left(e^{\frac{1}{2} Z^{2}} Y_{\text {in }}^{\prime}\right)=0, \quad \text { so } \quad Y_{\text {in }}^{\prime}(Z)=C e^{-\frac{1}{2} Z^{2}}, \quad \text { so } \quad Y_{\text {in }}(Z)=C \int_{0}^{Z} e^{-\frac{1}{2} t^{2}} d t \tag{2.6}
\end{equation*}
$$

To solve for C we need to impose the matching condition $\lim _{Z \rightarrow \pm \infty} Y_{\text {in }}(Z)=\lim _{z \rightarrow 0^{ \pm}} y_{\text {out }}$, but this will be different in the different regions. We note the identity $\int_{0}^{\infty} e^{-\frac{1}{2} t^{2}} d t=\sqrt{\frac{\pi}{2}}$. Then for $z<0$ (i.e. $x<\frac{1}{2}$) where $y_{\text {out }}(z)=1$ we solve $\lim _{Z \rightarrow-\infty} Y_{\text {in }}(Z)=\lim _{z \rightarrow 0^{+}} y_{\text {out }}(z)$, so

$$
\begin{equation*}
C_{-} \int_{0}^{-\infty} e^{-\frac{1}{2} t^{2}} d t=1, \quad \text { so } \quad Y_{\text {in }}(Z)=-\sqrt{\frac{2}{\pi}} \int_{0}^{Z} e^{-\frac{1}{2} t^{2}} d t \quad \text { for } Z<0 . \tag{2.7}
\end{equation*}
$$

Similarly, for $z>0$ we have $y_{\text {out }}(z)=-1$ so $C_{+}=-\sqrt{\frac{2}{\pi}}$ and so

$$
\begin{equation*}
Y_{\text {in }}(Z)=-\sqrt{\frac{2}{\pi}} \int_{0}^{Z} e^{-\frac{1}{2} t^{2}} d t \text { for } Z>0 \tag{2.8}
\end{equation*}
$$

Part d)

To find the uniformly valid solution we define $y_{\text {match }}(z)=\lim _{z \rightarrow 0} y_{\text {out }}(z)$, which in both cases gives us $y_{\text {match }}(z)=y_{\text {out }}$ since $y_{\text {out }}$ is a constant. We see that in writing $y_{\text {unif }}=$ $y_{\text {in }}+y_{\text {out }}-y_{\text {match }}=y_{\text {in }}$, and noting that $Y_{\text {in }}(Z)$ is the same in both cases from (2.7) and (2.8), for all $z \in \mathbb{R}$ (i.e. all $x \in \mathbb{R}$) we have a uniformly valid expansion to leading order of

$$
\begin{equation*}
y_{\text {unif }}(Z)=-\sqrt{\frac{2}{\pi}} \int_{0}^{Z} e^{-\frac{1}{2} t^{2}} d t=-\sqrt{\frac{2}{\pi}} \int_{0}^{\frac{x-\frac{1}{2}}{\varepsilon}} e^{-\frac{1}{2} t^{2}} d t=y_{\text {unif }}(x) . \tag{2.9}
\end{equation*}
$$

We note that this is, up to rescaling, the so-called error function (Gaussian CDF), which for small ε will be very steep around the boundary layer $x=\frac{1}{2}$.

Q3. WKB analysis

Consider

$$
\begin{equation*}
\varepsilon^{2} y^{\prime \prime}+(1+x)^{4} y=0, \quad \text { for } x>0 . \tag{3.1}
\end{equation*}
$$

We want to perform WKB analysis on this equation.

Part a)

We first note that in writing $Q(x)=-(1+x)^{4}$ we have Schrödinger's equation $\varepsilon^{2} y^{\prime \prime}=$ $Q(x) y$. We start by assuming y has the form

$$
\begin{align*}
& y \sim \exp \left[\frac{1}{\delta} \sum_{n=0}^{\infty} \delta^{n} S_{n}(x)\right], \\
& \text { so } \quad y^{\prime} \sim\left(\frac{1}{\delta} \sum_{n=0}^{\infty} \delta^{n} S_{n}^{\prime}(x)\right) \exp \left[\frac{1}{\delta} \sum_{n=0}^{\infty} \delta^{n} S_{n}(x)\right], \\
& \text { so } \quad y^{\prime \prime} \sim\left(\frac{1}{\delta} \sum_{n=0}^{\infty} \delta^{n} S_{n}^{\prime \prime}(x)+\frac{1}{\delta^{2}}\left(\sum_{n=0}^{\infty} \delta^{n} S_{n}(x)\right)^{2}\right) \exp \left[\frac{1}{\delta} \sum_{n=0}^{\infty} \delta^{n} S_{n}(x)\right] . \tag{3.2}
\end{align*}
$$

Using the Cauchy product expansion we can write the coefficient of the exponential in $y^{\prime \prime}$ as

$$
\frac{1}{\delta^{2}} S_{0}^{\prime 2}+\frac{1}{\delta}\left(2 S_{0}^{\prime} S_{1}^{\prime}+S_{0}^{\prime \prime}\right)+\left(S_{1}^{\prime \prime}+S_{1}^{\prime 2}+2 S_{0}^{\prime} S_{2}^{\prime}\right)+O(\delta)
$$

So, substituting these equations into (3.1) and dividing by the exponential, we have

$$
\begin{equation*}
\frac{\varepsilon^{2}}{\delta^{2}} S_{0}^{\prime 2}+\frac{\varepsilon^{2}}{\delta}\left(2 S_{0}^{\prime} S_{1}^{\prime}+S_{0}^{\prime \prime}\right)+\varepsilon^{2}\left(S_{1}^{\prime \prime}+S_{1}^{\prime 2}+2 S_{0}^{\prime} S_{2}^{\prime}\right)+\varepsilon^{2} O(\delta)=Q(x) . \tag{3.3}
\end{equation*}
$$

We may then perform a dominant balance analysis to determine $\delta(\varepsilon)$. Let T1, T2 and T3 denote the terms associated to $\frac{\varepsilon^{2}}{\delta}, \frac{\varepsilon^{2}}{\delta}$ and 1 (i.e. $Q(x)$) respectively (we can safely ignore $O\left(\varepsilon^{2}\right)$ terms as $\varepsilon \rightarrow 0$). First assume that $\mathrm{T} 1 \ll \mathrm{~T} 2 \sim \mathrm{~T} 3$, so $\delta=\varepsilon^{2}$, giving $\frac{1}{\varepsilon^{2}} S_{0}^{\prime 2} \ll 2 S_{0}^{\prime} S_{1}^{\prime}+S_{0}^{\prime \prime} \sim Q(x)$. But then as $\varepsilon \rightarrow 0$ the left hand side of this will go to ∞, which contradicts the fact that it is much less than $Q(x)$ which does not diverge, thus giving a contradiction. If we then suppose $\mathrm{T} 3 \ll \mathrm{~T} 1 \sim \mathrm{~T} 2$, this would imply $\frac{\varepsilon^{2}}{\delta^{2}}=\frac{\varepsilon^{2}}{\delta}$, so $\delta=1$. But then all terms on the left hand side of (3.3) go to 0 as $\varepsilon \rightarrow 0$, which contradicts $Q(x) \ll \mathrm{T} 1, \mathrm{~T} 2$ hence we have another contradiction.

Therefore, dominant balance tells us that $\frac{\varepsilon^{2}}{\delta^{2}}$ must have the same order of magnitude as $Q(x)$, so δ is proportional to ε so we may just take $\delta=\varepsilon$. We then have the first few orders as

$$
\begin{align*}
O(1): & S_{0}^{\prime 2}=-(1+x)^{4} \\
O(\varepsilon): & 2 S_{0}^{\prime} S_{1}^{\prime}+S_{0}^{\prime \prime}=0, \tag{3.4}\\
O\left(\varepsilon^{2}\right): & S_{1}^{\prime \prime}+S_{1}^{\prime 2}+2 S_{0}^{\prime} S_{2}^{\prime}=0
\end{align*}
$$

Hence we can solve $S_{0}^{\prime}= \pm i(1+x)^{2}$, so

$$
\begin{equation*}
S_{0}(x)=\int \pm i(1+x)^{2} d x= \pm \frac{i}{3}(x+1)^{3}+C_{ \pm} . \tag{3.5}
\end{equation*}
$$

The leading order solution is considered to be all non-negligible terms in the limit $\varepsilon \rightarrow 0$, meaning we want to solve the $O(\varepsilon)$ equation as well. Since $S_{0}^{\prime}= \pm i(1+x)^{2}$ from before, meaning $S_{0}^{\prime \prime}= \pm 2 i(1+x)$, we have (noting that $x+1>0$ so $\log |x+1|=\log (x+1)$),

$$
\begin{aligned}
& 2 S_{0}^{\prime} S_{1}^{\prime}+S_{0}^{\prime \prime}= \pm 2 i(1+x)^{2} S_{1}^{\prime} \pm 2 i(1+x)=0 \\
& \text { so } \quad S_{1}=\int-\frac{1}{x+1} d x=-\log (x+1)+D_{ \pm}
\end{aligned}
$$

Noting that our two possible solutions for $S_{0}(x)$ are linearly independent solutions (giving us a sum of exponentials in the final solution) and writing $C_{1}=\exp \left(\frac{1}{\varepsilon} C_{+}+D_{+}\right)$and $C_{2}=\exp \left(\frac{1}{\varepsilon} C_{-}+D_{-}\right)$, we have the leading order solution

$$
\begin{equation*}
y(x) \sim \frac{C_{1}}{x+1} \exp \left[\frac{i}{3 \varepsilon}(1+x)^{3}\right]+\frac{C_{2}}{x+1} \exp \left[-\frac{i}{3 \varepsilon}(1+x)^{3}\right] \tag{3.6}
\end{equation*}
$$

We note that the presence of the i in the exponential will give periodic solutions (ultimately due to the fact that $Q(x)<0$ for all x), but it is more convenient to leave it in exponential form for the moment.

Part b)

We can then impose the boundary conditions $y(0)=0$ and $y^{\prime}(0)=1$. The first one gives us

$$
\begin{equation*}
0=C_{1} e^{\frac{i}{3 \varepsilon}}+C_{2} e^{-\frac{i}{3 \varepsilon}} \tag{3.7}
\end{equation*}
$$

For $f(x)=\frac{A}{x+1} \exp \left[k(1+x)^{3}\right]$ where k and A are some constants, we have

$$
\begin{gathered}
f^{\prime}(x)=\frac{A}{(x+1)^{2}}\left(3 k(x+1)^{3}-1\right) e^{k(1+x)^{3}} \\
\text { so } \quad y^{\prime}(x)=\frac{C_{1}}{(x+1)^{2}}\left(\frac{i}{\varepsilon}(x+1)^{3}-1\right) e^{\frac{i}{3 \varepsilon}(1+x)^{3}}-\frac{C_{2}}{(x+1)^{2}}\left(\frac{i}{\varepsilon}(x+1)^{3}+1\right) e^{-\frac{i}{3 \varepsilon}(1+x)^{3}} .
\end{gathered}
$$

Hence applying our second condition we have

$$
1=C_{1}\left(\frac{i}{\varepsilon}-1\right) e^{\frac{i}{3 \varepsilon}}-C_{2}\left(\frac{i}{\varepsilon}+1\right) e^{-\frac{i}{3 \varepsilon}}=C_{1}\left(\frac{i}{\varepsilon}-1\right) e^{\frac{i}{3 \varepsilon}}+C_{1}\left(\frac{i}{\varepsilon}+1\right) e^{\frac{i}{3 \varepsilon}}=\frac{2 C_{1} i}{\varepsilon} e^{\frac{i}{3 \varepsilon}},
$$

where we used (3.7) in the second equality. Rearranging we find that

$$
\begin{equation*}
C_{1}=\frac{\varepsilon}{2 i} e^{-\frac{i}{3 \varepsilon}}, \quad \text { so } \quad C_{2}=-\frac{\varepsilon}{2 i} e^{\frac{i}{3 \varepsilon}} \tag{3.8}
\end{equation*}
$$

which gives a leading order solution of
$y(x) \sim \frac{\varepsilon}{2 i(x+1)} e^{\frac{i}{3 \varepsilon}\left((x+1)^{3}-1\right)}-\frac{\varepsilon}{2 i(x+1)} e^{-\frac{i}{3 \varepsilon}\left((x+1)^{3}-1\right)}=\frac{\varepsilon}{i(x+1)} \sinh \left(\frac{i}{3 \varepsilon}\left((x+1)^{3}-1\right)\right)$,
which, using the fact that $\sinh (i x)=i \sin (x)$, finally simplifies to

$$
\begin{equation*}
y(x) \sim \frac{\varepsilon}{(x+1)} \sin \left(\frac{(x+1)^{3}-1}{3 \varepsilon}\right) \tag{3.9}
\end{equation*}
$$

Part c)

To determine the region of validity of the WKB approximation, we first want to solve for S_{2} in the $O\left(\varepsilon^{2}\right)$ equation of (3.4), which gives

$$
\begin{gather*}
0=S_{1}^{\prime \prime}+S_{1}^{\prime 2}+2 S_{0}^{\prime} S_{2}^{\prime}=\frac{1}{(x+1)^{2}}+\frac{1}{(x+1)^{2}} \pm 2 i(x+1)^{2} S_{2}^{\prime}, \\
\text { so } \quad S_{2}^{\prime}=\mp \frac{1}{i}(x+1)^{-4}, \quad \text { so } \quad S_{2}= \pm \frac{1}{3 i} \frac{1}{(x+1)^{3}}+E_{ \pm} . \tag{3.10}
\end{gather*}
$$

We know from lectures that our leading order WKB approximation is valid on some interval $I \subseteq \mathbb{R}$ if the following two conditions are met (where $\delta=\varepsilon$):

$$
\begin{equation*}
\varepsilon S_{2} \ll S_{1} \ll \frac{1}{\varepsilon} S_{0}, \quad \text { and } \quad \varepsilon S_{2} \ll 1, \quad \text { as } \quad \varepsilon \rightarrow 0 . \tag{3.11}
\end{equation*}
$$

When performing such asymptotic calculations we may discard coefficients of S_{i} terms (we only care about the x behaviour) and arbitrary constants $C_{ \pm}, D_{ \pm}, E_{ \pm}$as they are also negligible in the asymptotic expansions. Thus our first condition is

$$
\varepsilon \frac{1}{(x+1)^{3}} \approx \varepsilon S_{2} \ll S_{1} \approx \log (x+1),
$$

and so letting $x+1=\varepsilon^{\alpha}$ for some $\alpha \in \mathbb{R}$ we require

$$
\begin{equation*}
\varepsilon \ll \alpha \varepsilon^{3 \alpha} \log \varepsilon, \quad \text { so } \quad 1 \ll \alpha \varepsilon^{3 \alpha-1} \log \varepsilon, \quad \text { so } \quad 3 \alpha-1<0, \quad \text { so } \quad \alpha<\frac{1}{3} \tag{3.12}
\end{equation*}
$$

meaning our first requirement is $x+1 \gg \varepsilon^{\frac{1}{3}}$. Note that the conclusion that $3 \alpha-1<0$ follows from the requirement that $\alpha \varepsilon^{3 \alpha-1} \log \varepsilon$ be much greater than 1 for small ε. Next we have

$$
\begin{equation*}
\log (x+1) \approx S_{1} \ll \frac{1}{\varepsilon} S_{0} \approx \frac{1}{\varepsilon}(x+1)^{3}, \tag{3.13}
\end{equation*}
$$

so again taking $x+1=\varepsilon^{\alpha}$ this gives

$$
\begin{equation*}
1 \ll \frac{\varepsilon^{3 \alpha-1}}{\alpha \log \varepsilon} \tag{3.14}
\end{equation*}
$$

which is true for any value of α. Our final condition gives

$$
\begin{equation*}
\varepsilon \frac{1}{(x+1)^{3}} \ll 1, \quad \text { so } x+1 \gg \varepsilon^{\frac{1}{3}}, \tag{3.15}
\end{equation*}
$$

which we note is the same as the first condition above. Therefore the WKB leading order approximation is valid for $x+1 \gg O\left(\varepsilon^{1 / 3}\right)$.

Q4. Multiple time scales

Consider $y(t)$ satisfying the equation

$$
\begin{equation*}
\ddot{y}+y+\varepsilon y \dot{y}^{2}=0, \quad t>0, \quad y(0)=0, \quad \dot{y}(0)=1 . \tag{4.1}
\end{equation*}
$$

We want to use the method of multiple time scales, with $T_{0}=t$ and $T_{1}=\tau=\varepsilon t$ to determine the leading order term of the uniformly valid asymptotic expansion of $y(t)$.

We begin by assuming

$$
\begin{gather*}
y(t)=Y(t, \tau)=\sum_{n=0}^{\infty} \varepsilon^{n} Y_{n}(t, \tau)=Y_{0}(t, \tau)+\varepsilon Y_{1}(t, \tau)+\varepsilon^{2} Y_{2}(t, \tau)+\ldots \\
\text { with } Y(0,0)=0, \quad \text { and }\left.\quad \frac{\partial Y_{0}}{\partial t}\right|_{(0,0)}=1 \tag{4.2}
\end{gather*}
$$

which gives derivatives of

$$
\begin{align*}
\frac{d y}{d t} & =\frac{\partial Y_{0}}{\partial t}+\varepsilon\left(\frac{\partial Y_{0}}{\partial \tau}+\frac{\partial Y_{1}}{\partial t}\right)+O\left(\varepsilon^{2}\right) \tag{4.3}\\
\text { and } \quad \frac{d^{2} y}{d t^{2}} & =\frac{\partial^{2} Y_{0}}{\partial t^{2}}+\varepsilon\left(2 \frac{\partial^{2} Y_{0}}{\partial t \partial \tau}+\frac{\partial^{2} Y_{1}}{\partial t^{2}}\right)+O\left(\varepsilon^{2}\right) .
\end{align*}
$$

Substituting these into (4.1), we have (neglecting higher order terms since we are only interested in the leading order)

$$
\begin{align*}
0 & =\frac{\partial^{2} Y_{0}}{\partial t^{2}}+\varepsilon\left(2 \frac{\partial^{2} Y_{0}}{\partial t \partial \tau}+\frac{\partial^{2} Y_{1}}{\partial t^{2}}\right)+Y_{0}+\varepsilon Y_{1}+\varepsilon\left(Y_{0}+\varepsilon Y_{1}\right)\left(\frac{\partial Y_{0}}{\partial t}+\varepsilon\left(\frac{\partial Y_{0}}{\partial \tau}+\frac{\partial Y_{1}}{\partial t}\right)\right)^{2}+O\left(\varepsilon^{2}\right) \\
& =\left(\frac{\partial^{2} Y_{0}}{\partial t^{2}}+Y_{0}\right)+\varepsilon\left(2 \frac{\partial^{2} Y_{0}}{\partial t \partial \tau}+\frac{\partial^{2} Y_{1}}{\partial t^{2}}+Y_{1}+Y_{0}\left(\frac{\partial Y_{0}}{\partial t}\right)^{2}\right)+O\left(\varepsilon^{2}\right) \tag{4.4}
\end{align*}
$$

Thus our $O(1)$ equation is

$$
\begin{equation*}
\frac{\partial^{2} Y_{0}}{\partial t^{2}}+Y_{0}=0, \quad \text { so } \quad Y_{0}=A(\tau) e^{i t}+\bar{A}(\tau) e^{-i t} \tag{4.5}
\end{equation*}
$$

for some function $A=A(\tau)$ where \bar{A} denotes the conjugate, since Y_{0} is a real function. Then, our $O(\varepsilon)$ equation is

$$
\begin{align*}
\frac{\partial^{2} Y_{1}}{\partial t^{2}}+Y_{1} & =-2 \frac{\partial^{2} Y_{0}}{\partial t \partial \tau}-Y_{0}\left(\frac{\partial Y_{0}}{\partial t}\right)^{2} \\
& =-2\left(A^{\prime}(\tau) i e^{i t}-\bar{A}^{\prime}(\tau) i e^{-i t}\right)-\left(A(\tau) e^{i t}+\bar{A}(\tau) e^{-i t}\right)\left(i\left(A(\tau) e^{i t}-\bar{A}(\tau) e^{-i t}\right)\right)^{2} \\
& =\left(-2 i A^{\prime}-A^{2} \bar{A}\right) e^{i t}+\left(2 i \bar{A}^{\prime}-A^{2}\right) e^{-i t}+A^{3} e^{3 i t}+\bar{A}^{3} e^{-3 i t} \tag{4.6}
\end{align*}
$$

The homogeneous solution of this equation is

$$
\begin{equation*}
Y_{1, \operatorname{hom}}(t)=B(\tau) e^{i t}+\bar{B}(\tau) e^{-i t} \tag{4.7}
\end{equation*}
$$

which has a frequency of 1 , which suggests that the $e^{ \pm i t}$ terms in (4.6) will cause secular solutions. Thus, to avoid secular solutions we require $A(\tau)$ to be such that

$$
\begin{equation*}
2 i A^{\prime}(\tau)+A^{2}(\tau) \bar{A}(\tau)=0, \quad \text { and } \quad 2 i \bar{A}^{\prime}(\tau)-A(\tau) \bar{A}^{2}(\tau)=0 \tag{4.8}
\end{equation*}
$$

where the second equation is the complex conjugate of the first so we just require a solution to the first equation. To do this we apply a separation of variables technique (in some sense) and let

$$
\begin{equation*}
A(\tau)=R(\tau) e^{i \Theta(\tau)}, \quad \text { so } \quad \frac{d A}{d \tau}=\left(R^{\prime}+i R \Theta^{\prime}\right) e^{i \Theta} \tag{4.9}
\end{equation*}
$$

for some real functions R and Θ. Substituting this into the above we have

$$
2 i\left(R^{\prime}+i R \Theta^{\prime}\right) e^{i \Theta}+\left(R^{2} e^{2 i \Theta}\right)\left(R e^{-i \Theta}\right)=\left(2 i R^{\prime}-2 R \Theta^{\prime}+R^{3}\right) e^{i \Theta}=0
$$

After dividing by $e^{i \Theta}$, the real part of the equation gives

$$
-2 R \Theta^{\prime}+R^{3}=0, \quad \text { so } \quad \Theta^{\prime}(\tau)=\frac{1}{2} R^{2}
$$

and the imaginary part gives $2 i R^{\prime}(\tau)=0$, so

$$
R(\tau)=R(0), \quad \text { and } \quad \Theta(\tau)=\frac{1}{2} R(0)^{2} \tau+\Theta(0)
$$

so we finally have

$$
\begin{equation*}
A(\tau)=R(0) e^{i\left(\frac{1}{2} R(0)^{2} \tau+\Theta(0)\right)} \tag{4.10}
\end{equation*}
$$

We can hence write Y_{0} as

$$
\begin{align*}
Y_{0}(t) & =R(0) e^{i\left(\frac{1}{2} R(0)^{2} \tau+\Theta(0)+t\right)}+R(0) e^{-i\left(\frac{1}{2} R(0)^{2} \tau+\Theta(0)+t\right)} \\
& =2 R(0) \cos \left(\frac{1}{2} R(0)^{2} \tau+\Theta(0)+t\right) \tag{4.11}
\end{align*}
$$

Applying our boundary conditions in (4.2) we have

$$
Y_{0}(0,0)=2 R(0) \cos (\Theta(0))=0, \quad \text { and }\left.\quad \frac{\partial Y_{0}}{\partial t}\right|_{(0,0)}=-2 R(0) \sin (\Theta(0))=1
$$

which thus gives (noting that the non-uniqueness of $\Theta(0)$ is ultimately not problematic as it has the same effect in (4.13))

$$
\begin{equation*}
\Theta(0)=\frac{\pi}{2}, \quad \text { and } \quad R(0)=-\frac{1}{2} \tag{4.12}
\end{equation*}
$$

Plugging this into (4.11), using $\tau=\varepsilon t$ and the fact that $\cos (x+\pi / 2)=-\sin (x)$, we have

$$
\begin{equation*}
Y_{0}(t)=-\cos \left(\frac{1}{8} \tau+\frac{\pi}{2}+t\right)=\sin \left(\left(1+\frac{1}{8} \varepsilon\right) t\right) \tag{4.13}
\end{equation*}
$$

Therefore our leading order solution is

$$
\begin{equation*}
y(t)=\sin \left(\left(1+\frac{1}{8} \varepsilon\right) t\right)+O(\varepsilon), \quad \text { as } \varepsilon \rightarrow 0^{+}, \quad \varepsilon t=O(1) \tag{4.14}
\end{equation*}
$$

We see that the period is $T \sim \frac{1}{1+\frac{1}{8} \varepsilon} \sim 1-\frac{1}{8} \varepsilon$ where the second equality uses the Taylor expansion of $\frac{1}{1+\varepsilon}$ for small ε.

