Advanced Methods Differential Equations Assignment 2
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Due Date: 26" May 2021

Q1. Boundary layers
Let 0 < ¢ < 1 and consider

ey —y(y +y) =0, 0<x<1, where y0)=e, y(1)=3. (1.1)

Given that there is a boundary layer at * = 1, we want to find the outer, inner and
uniformly valid expansion to leading order.

Since there is a boundary layer at x = 1, we may start by making a simple change of

. . . . d _dzd _ _ d . .
variables z = 1 — x, which gives ;= = 22~ = —--, so that we are now considering a

boundary layer at z = 0, and (1.1) becomes (where y = y(z))
e/ +yy —y> =0, 0<z<1, where »(0)=3, y(l)=e. (1.2)

We first consider the outer solution yout(z) = Y non€"Yn(2) = yo + €y1 + ... in the outer
region 0 < z < 1, so substituting into (1.1) this gives

2.1

e(yy +eyl +e%ys +...) + (o +eyi + 2y + .. ) ((Wh — vo) + (W) — y1) +2(vh — y2) + - ..

but since we are in the outer region, the leading order term will dominate, so we have
Yout (2) =~ yo(z), so by comparing orders we have

O(1): wolyo—y) =0, so yo=0 or yjp—yo=0.

The first solution is trivial and gives no boundary layer, meaning we must be in the
situation of y{, = yo, so yo = Ae®. Using y(1) = e away from the boundary layer, this gives

Your(2) = yo(2) = e* = e!7%. (1.3)
For the inner solution, we start by stretching the region to z = 67, so d% = %%, which
turns our equation (1.2) into (where yin(z) = Yin(2)),

iy” 1

57 Yin 5Yin;—Yi§:0 for ¢ —0. (1.4)

We can then apply a dominant balance argument: first suppose § < ¢, so &5 > % > 1,
which gives Y;! = 0 so Yin(Z) = AZ + B, but this diverges as Z — oo so it couldn’t be
matched. If § > ¢, so § < % < 1, this would give the %YinYi; term dominating, giving
Yin = 0 or Yi, = Z, both of which cannot be matched. Therefore we must have § = ¢ and
o (1.4) becomes

1 1
gYiﬁ + gYinYiﬁ ~YZ=0. (1.5)



Letting Yin(Z) =Y 02 ,e"Y,, = Yo + Y1 + ..., we have
1 1
g(YO”+5Y1”+52Y2”+...)+ E(Y(')’+5Y1’+52Y2’+...)(YO+5Y1+52Y2+...)
—(Yo+eYi+eYo+...)2=0. (1.6)
We only need to consider the O(%) term in the leading order as ¢ — 0, so we have
1
O <€> DYy +YYo =0. (1.7)

To solve the O(%) equation, we note the identity %y(:ﬂ)z = 2y'y, so integrating both sides
we have

1
/(Yd’+Yo’Yo)dZ—Yo’+2Y02—C—0,

1 2 Y(
SO /12dY0:/dZ, SO farctanh( 0 ) =Z+A.
C — Y Ve V20
Letting B = V2C' we can rearrange this to get

Yo(Z) = Btanh (f(z + A)) (1.8)

for some constants A and B. We can then apply the boundary condition at the boundary
layer (which must be valid for the highest order term), y(0) = 3, to see

AB eAB — 1
3:Btanh<2>= m»
1 B+3
— B)eAB B) = A=—log| =——).
so (3 )e*” +(3+B)=0, so Bog<33>
Using the identity tanh(z +y) = %, we can thus rewrite (1.8) as
tah (§2) + ks (3102 ($3) ) 5 ant (£2) +38
Yo(Z) = B _ L)

1 + tanh (gZ) tanh (% log (g*‘g)) B + 3tanh (%Z)
where in the second equality we used the following simple calculation:

B+3
1 B+3 B3 — B+3-B+3 3
tanh <2log( + >> - B3 _ b o —.

B-3 54341 B+3+B-3 B

To determine B we want to use the matching condition limy_, Yin(Z) = lim,—0 Yout-
Noting that lim,_,. tanh(kz) = sign(k) (i.e. +1 if £ > 0 and —1 if k£ < 0) we have

2 .
lim Yin(Z) = B agn(?) + 3B
Z—00 B + 3sign(B)

=1=1limyou, so B==l. (1.10)
z—0
Either option will give the same solution so we can take B = 1 for simplicity. Therefore,

1 z
B tanh(§Z>+3 L2741 2t 41
3tanh(%Z)+1 27 =1 2z —1°

Yin(2) (1.11)

Using the fact that ymaten = lim, 0 youtr = 1 and recalling that z = 1 — z, we finally have
l—x
_ 2e s +1
yunif(x) = yout(x) + ym(m) — Ymatch = 61 v + ﬁ —1. (112)
e —

It is easily verified that this satisfies the desired properties and so we are done. [J




Q2. Internal boundary layer

Consider

1
ey + (2% — Z)y’ =0, O<xz<1, where y(0)=1, y(1)=—1. (2.1)

Part a)

Denoting a(z) = 22 — 1 = (z — §)(z + 3), we see that a(3) = 0 (note that —% ¢ (0,1)),

meaning that there is a singularity of the ODE at 2 = 1. In such a region a(:n) ~ O(e)

meaning there can be rapid changes in ", hence meaning we must go through a boundary
layer at x = % by the remarks in W7 (page 6) of the lecture notes.

Part b)
First consider the region z < 3, where we set yout () = yo(x) +ey1(z) +. . ., then we have
e(yy +eyl +...) +alz)(yo+eyy +...) =0, (2.2)
so to leading order (i.e. analysing the O(1) terms) we see that
a(z)yo=0, so yo(z)=0C_,

for some constant C_, and so applying y(0) = 1 we have yo(x) = 1. Since this is an outer
solution, we only consider O(1) terms as O(e) is very small in this region, so we have
Yout(z) = 1 for z < %

Performing an identical analysis with the same expansion as in (2.2), shows that for

x > % we must have yo(z) = C for some constant C'y, hence applying y(1) = —1 we have
yo(z) = —1, 50 Yout(z) = —1 for z > 3.
Part c)

To determine the inner solution about x = % we will make a change of variables z = x — %

to simplify our analysis to have a boundary layer z = 0, still in the interior of the domain.
Noting that = = &£ (2.1) becomes

1 1 1
ey +2(z+ 1)y =0, —5<#<g3, where y(f§) =1, y(z)=-1, (2.3)

where we denote a(z) = z(z +1). Now let z = 67 (so d% = %% and yin(2) = Yin(2)),
then (2.3) becomes

Sy Oy

Since we are near a boundary layer, we may write a(z) ~ a’(0)z as z — 0 and calculate
a(z) =22+1s0d(0)=1,s0a(6Z) =~ §Z and our equation becomes

5—21111 +ZY; =0. (2.4)
We may then perform a dominant balance. First suppose § < ¢ which implies 57 > % >1
which gives a dominant Y} term, so Yi,(Z) = AZ+ B for some constant A and B. But then

limy_, s Yin = 00, so we couldn’t match and so this can’t be the balance. Alternatively, if
0> ¢, then § < 1, meaning the ZY;/ term dominates and so Yi, = A for some constant A.



But then we again cannot match the inner and outer solutions at Z — oo unless A = +1
(depending on the region), at which point there would be no boundary layer. Thus we
must have 57 ~ 1, so our equation becomes

Y+ ZY =0. (2.5)
We can then solve this by introducing the integrating factor of I = exp ( [ ZdZ) =
exp (%Z2>, 0]

d Z
d—Z(e%ZQYig) =0, so Y/ (Z)= Ce 2% , so Yn(2)=C e 2P dt . (2.6)
0

To solve for C' we need to impose the matching condition limy_, 4+~ Yin(Z) = lim,_,g+ Yout,
1

but this will be different in the different regions. We note the identity fooo e 2t dt = \/g .

Then for z < 0 (i.e. z < %) where yout(z) = 1 we solve limy_, o Yin(Z) = lim,_,g+ Yout(2),

S0
o, 2 (7 _1p
C-_ e z2tdt=1, so Yi(Z2)=—/— e 2dt for Z<0. (2.7)
0 T Jo

Similarly, for z > 0 we have yout(2) = —1 so Cy = —\/g and so

2 Z
Yin(Z) = —\/;/ e 2dt for Z>0. (2.8)
0

Part d)

To find the uniformly valid solution we define ymaten(2) = lim,—0 Yout(2), which in both
cases gives US Ymatch(2) = Yout Since Yoyt 1S a constant. We see that in writing yuni =
Yin + Yout — Ymatch = Yin, and noting that Yj,(Z) is the same in both cases from (2.7) and
(2.8), for all z € R (i.e. all z € R) we have a uniformly valid expansion to leading order of

1
r—3

2 [Z _1p 2 = e
yunif(Z) ==\ = e 2t dt =—y/= e 2" dt = yunif(l‘) . (29)
™ Jo ™ Jo

We note that this is, up to rescaling, the so-called error function (Gaussian CDF), which

for small € will be very steep around the boundary layer x = % O




Q3. WKB analysis

Consider
2"+ (1+x)ly=0, for z>0. (3.1)
We want to perform WKB analysis on this equation.

Part a)

We first note that in writing Q(z) = —(1 + z)* we have Schrédinger’s equation £2y” =
Q(x)y. We start by assuming y has the form

1 o= o
Y ~ exp 57;)5 Sn(x)|

1= o 1= o
so Yy ~ 52}5 Sl (z) | exp 52}(5 Sn(x)|
) 2

1S 1 [« Ly
0 y// -~ g Z (5”5;{(.%) + 572 Z 5"Sn($) exp 5 Z 5”Sn(x) . (32)
n=0 n=0 n=0

Using the Cauchy product expansion we can write the coefficient of the exponential in 1"

as
1, 1
2% 5

So, substituting these equations into (3.1) and dividing by the exponential, we have

(25585 + SY) + (S + Si2 4 28555) + O(6) .

2 2

S5+ S (25081 + S6) + €X(SY + S +25085) +2000) = Q). (33)

We may then perform a dominant balance analysis to determine §(¢). Let T1, T2 and
T3 denote the terms associated to %, % and 1 (i.e. Q(z)) respectively (we can safely
ignore O(g?) terms as ¢ — 0). First assume that T1 <« T2 ~ T3, so § = &2, giving
LS < 25)S7 + 5§ ~ Q(z). But then as e — 0 the left hand side of this will go to oo,
which contradicts the fact that it is much less than Q(z) which does not diverge, thus
giving a contradiction. If we then suppose T3 < T1 ~ T2, this would imply g—z = %, SO
0 = 1. But then all terms on the left hand side of (3.3) go to 0 as € — 0, which contradicts
Q(z) < T1, T2 hence we have another contradiction.

Therefore, dominant balance tells us that %2 must have the same order of magnitude
as Q(x), so ¢ is proportional to £ so we may just take 6 = . We then have the first few
orders as

( ) 562:—(1+.%')4,
O(e): 25)S1+ Sy =0, (3.4)
) S+ SP+250S,=0.

So(z) = /iz’(l +a)2de = %(m+1>3+ci. (3.5)



The leading order solution is considered to be all non-negligible terms in the limit € — 0,
meaning we want to solve the O(e) equation as well. Since S} = +i(1 + z)? from before,
meaning S = £2i(1 + x), we have (noting that  + 1 > 0 so log |z + 1| = log(z + 1)),

280S) + S = +2i(1 + x)28] £2i(1+2) =0,

1
S0 51:/—x+1da::—log(m+1)+Di.

Noting that our two possible solutions for Sy(z) are linearly independent solutions (giving
us a sum of exponentials in the final solution) and writing C; = exp(2C; + D) and
Cy = exp(%C_ + D_), we have the leading order solution

y(x) e [38(1+x)}+$+1exp[ 35(1#—95)} . (3.6)

We note that the presence of the 7 in the exponential will give periodic solutions (ultimately
due to the fact that Q(z) < 0 for all ), but it is more convenient to leave it in exponential
form for the moment.

Part b)

We can then impose the boundary conditions y(0) = 0 and y'(0) = 1. The first one gives
us

0= 016é + Cge_é . (37)
For f(x) = %;1 exp [k(1 + z)3] where k and A are some constants, we have

A

"Np) = —— 3 _ k(1+z)3
f(@) CESE (3k(z +1)> —1)e :
& ! = z c v _ i T
» yl(x) B m (E(x—l— 1)3 - 1) e3< 1+ » ﬁ (8(33 + 1)3 + 1) e 3= (1+ )3 )

Hence applying our second condition we have

1—01(2—1)6%—C2<Z+1>e%—Cl(l—1>e3e+C1<Z+1>eBE— ﬂe%,
€ € € € €

where we used (3.7) in the second equality. Rearranging we find that

€ _i € i
Ch = 3¢ ¥, 0 Cy = —5;¢% (3.8)

which gives a leading order solution of

S (S (i Ly G (PP
y(@) 2z + 1) 2z +1)° iy (@ +1)°=1) ),

which, using the fact that sinh(iz) = isin(z), finally simplifies to

€ T 3 —
y(x) ~ @+ D) sin <( +;2‘ 1) . (3.9)




Part c)

To determine the region of validity of the WKB approximation, we first want to solve for
So in the O(£?) equation of (3.4), which gives

1 1
0=257+SPZ+25,8, = + 2i 1)28;
1+ 1+ 0~2 ($+1)2+($+1)2 Z(.%'+ ) 2
. 4 g1
0 SQ—:FZ.(a:—Fl) , SO 52_i3i(:c+1)3+Ei' (3.10)

We know from lectures that our leading order WKB approximation is valid on some
interval I C R if the following two conditions are met (where § = ¢):

1
€Sy < S1 <« -85y, and &Sy <«1, as e—0. (3.11)
€

When performing such asymptotic calculations we may discard coefficients of S; terms
(we only care about the x behaviour) and arbitrary constants Cy, D1, E1 as they are also
negligible in the asymptotic expansions. Thus our first condition is

1

gm ] ESQ <K Sl ~ 10g($+ 1),

and so letting x + 1 = & for some o € R we require

1
e < asloge, so l<ae*® lloge, so 3a—1<0, so oz<§ (3.12)

meaning our first requirement is = + 1 > £3. Note that the conclusion that 3a — 1 < 0
follows from the requirement that ae?*~!loge be much greater than 1 for small e. Next
we have

1 1
log(x +1) ~ 51 < ESO ~ g(x +1)3, (3.13)

so again taking x 4+ 1 = & this gives

3a—1
1< aloge (3:14)
which is true for any value of .. Our final condition gives
1 1
6m<<1, so z+1>¢e3, (3.15)

which we note is the same as the first condition above. Therefore the WKB leading order
approximation is valid for z + 1> O(e!/?).



Q4. Multiple time scales
Consider y(t) satisfying the equation

j4+y+eyy?=0, t>0, y0)=0, y0)=1. (4.1)
We want to use the method of multiple time scales, with Ty = ¢t and 77 = 7 = €t to

determine the leading order term of the uniformly valid asymptotic expansion of y(¢).

We begin by assuming

yit) =Y (t, 1) = iEnYn(t,T) = Yo(t,7) +eYi(t,7) + 2 Ya(t, ) + ...
n=0

Yy

with Y(O, O) =0 y and E

=1, (4.2)
(0,0

which gives derivatives of

dy 0% (9% Oy 2
at ot <87 BT > +0(), (43)

2y 0%, 2%y, %Y, )
= e T\ %0 T | TOE)

Substituting these into (4.1), we have (neglecting higher order terms since we are only
interested in the leading order)

2
G 0%Yy  0°Y; Y, oYy Yy
0:0+€<2 04 1>+Y()+5Y1+5(Y()+€Y1)<0+5< 0+ 1>> +0(=?)

and

ot otor ot ot or ot
%Yy %Yy 0*Y; oYy \? 2
Thus our O(1) equation is
2
Y L A
T+ ¥ =0, so Yo=A(r)e + A(r)e ™ (45)

for some function A = A(7) where A denotes the conjugate, since Yy is a real function.
Then, our O(¢e) equation is

= -2 (A’(T)ieit — Z/(T)ie_it) — <A(7‘)eit + Z(T)e_it) <z (A(T)eit — A(T)e_it>)2
— (= 204" — A%A)e" + (2544 — AA%)e " + APP 4 AP (4.6)
The homogeneous solution of this equation is
Y1 hom (t) = B(T)eit + E(T)e*it , (4.7)

which has a frequency of 1, which suggests that the e terms in (4.6) will cause secular
solutions. Thus, to avoid secular solutions we require A(7) to be such that

%A (1) + A%(1)A(r) =0, and 2iA (1) — A(r)A° (1) =0, (4.8)



where the second equation is the complex conjugate of the first so we just require a solution
to the first equation. To do this we apply a separation of variables technique (in some
sense) and let

A(T) = R(1)e®™) | 5o % = (R 4 iRO")e® (4.9)
for some real functions R and ©. Substituting this into the above we have
2i(R' +iRO")e™® + (R%*©)(Re™™®) = (2iR' — 2RO’ + R%)e™® = 0.
After dividing by €%©, the real part of the equation gives
—2RO'+ R*=0, so ©O(r)= %R2,
and the imaginary part gives 2iR'(7) = 0, so
R(r) = R(O), and ©(r) = L R(0)*r +©(0),
so we finally have
A(r) = R(0)&! (RO T+6(0) (4.10)
We can hence write Yy as
Yo(t) = R(O)ei(%R(O)2T+®(O)+t) 4 R(O)e—z‘(%R(O)QT-i—@(O)-i-t)
= 2R(0) cos (;R(o)% +0(0) + t) . (4.11)
Applying our boundary conditions in (4.2) we have

0%

Y0(0,0) = 2R(0) cos (©(0)) =0, and 5

= —2R(0)sin (6(0)) =1,
(0.0

which thus gives (noting that the non-uniqueness of ©(0) is ultimately not problematic as
it has the same effect in (4.13))

0(0) =1, and R(O):—%. (4.12)

Plugging this into (4.11), using 7 = et and the fact that cos(z + 7/2) = —sin(z), we have

Yo(t) = — cos <;T+g+t> — sin <<1+;5> t> . (4.13)

Therefore our leading order solution is

y(t) = sin <<1 + ée) t) +0(e), as e—0", et=0(1). (4.14)

We see that the period is T ~ 1+11 -~ 1-— %E where the second equality uses the Taylor
8

: 1
expansion of = for small €. [J



