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Q1. Fredholm Alternative application

Consider the boundary problem for α, β ∈ R

Lu ≡

(
d2

dx2
+ 25

)
u(x) = αx2021 sin(3x) + β sin(5x) ≡ f(x) , (1.1)

with u(−π) = 0, u(π) = 0, for − π < x < π .

Note that it is trivial that L is self-adjoint, and these are homogeneous boundary condi-
tions, hence we may apply the Fredholm Alternative to our analysis. We first analyse the
homogeneous problem u′′ + 25u = 0 which leads to a solution

u1(x) = A cos(5x) +B sin(5x) = B sin(5x) , (1.2)

where the second equality follows from a simple application of the boundary conditions
in (1.1) - note, however, that these boundary conditions are not sufficient to specify the
value of the arbitrary constant B.

If we had an additional boundary condition that ensured B = 0, giving only one (trivial)
solution to homogeneous problem, namely u1(x) = 0, then the Fredholm Alternative tells
us that Lu = f has a unique solution for any values of α, β.

Supposing that B 6= 0, we have a nontrivial solution u1(x) to the homogeneous prob-
lem Lu = 0. Thus to determine the number of solutions to Lu = f we want to analyse
〈f(x), u1(x)〉. We can then perform the straightforward calculation

〈f(x), u1(x)〉 =

∫ π

−π

(
αx2021 sin(3x) + β sin(5x)

)
B sin(5x)dx

= αB

∫ π

−π
x2021 sin(3x) sin(5x)dx+ βB

∫ π

−π
sin2(5x)dx

=
βB

10

∫ 5π

−5π

(
1− cos(2w)

)
dw =

βB

10

[
w − 1

2
sin(2w)

]5π
−5π

= βBπ . (1.3)

Note that in the third line we used the fact that g(x) = x2021 sin(3x) sin(5x) is a product
of three odd functions, hence is odd itself, and so

∫ π
−π g(x)dx = 0 due to the symmetric

domain. Therefore since 〈f, u1〉 = βBπ, by the Fredholm Alternative we see that

Lu = f has

{
no solution if β 6= 0

infinitely many solutions if β = 0
. (1.4)

Note that we have shown that the value of α has no bearing on the number of solutions
to the boundary problem.
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Q2. Application of the Frobenius method

Consider the second order differential equation

(x− β)y′′ − xy′ + γy = 0 , (2.1)

where β, γ are parameters. We can rewrite this equation into the standard Frobenius form

y′′ +
p(x)

(x− β)
y′ +

q(x)

(x− β)2
y := y′′ − x

(x− β)
y′ +

γ(x− β)

(x− β)2
y = 0 . (2.2)

Part a)

With p(x) = −x and q(x) = γ(x − β) as above, we see that both of these simple linear
functions are clearly analytic at the point x = β, hence x = β is a regular singular point of
this differential equation. In other words, in writing a2y

′′+a1y
′+a0y = 0 with a2(x) = 1,

a1(x) = − x
x−β and a0(x) = γ

x−β , we see that a1(x) and a0(x) are both singular at x = β,

but (x−β)a1(x) and (x−β)2a0(x) are both analytic at x = β, hence it is a regular singular
point.

Part b)

Given that x = β is a regular singular point, we thus want to analyse a series of the form

y(x) = (x− β)αA(x) =

∞∑
n=0

an(x− β)α+n . (2.3)

We can first make a simple transformation z = x− β (which induces no change in differ-
entials, i.e. ∂

∂x = ∂
∂z ) and hence analyse

y′′ − z + β

z
y′ +

γz

z2
y = 0 with y(z) =

∞∑
n=0

anz
α+n (2.4)

about the point z = 0. Our two coefficient functions have Taylor expansions of the form

p(z) = p0 + p1z := −β − z , and q(x) = q0 + q1z := 0 + γz . (2.5)

Using the Frobenius method as outlined in the Week 4 lecture notes, we know that the
leading term of our series, i.e. the zα term, can be found by solving the indicial equation

P (α) = α(α− 1) + p0α+ q0 = α
(
α− (β + 1)

)
= 0 , (2.6)

hence giving the two indices of α1 = β + 1 and α2 = 0. Note here that this labelling to
ensure that Re(α1) ≥ Re(α2) clearly only holds if β ≥ −1, otherwise we will need to alter
it. In any case, the first solution y1(z) associated to α1 is guaranteed to be analytic in a
neighbourhood of z = 0, meaning we can write

y1(z) =

∞∑
n=0

anz
n+α1 . (2.7)

The analyticity of the second series solution is highly dependent on the parameter β. Sup-
pose first that β ≥ −1 to ensure our labelling as above. If β 6= −1, 0, 1, 2, . . . then the
second series will be of the same Frobenius form as in (2.3), suitably adjusted with different
coefficients, and analytic within its radius of convergence including the point z = 0. In the
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case of β = −1, the second solution will have the form of (2.13) and hence not be analytic
at z = 0 due to the presence of the log term - see part c) for details. If β = −1, 0, 1, 2, . . . ,
then either of these aforementioned solutions are possible - it then depends on the precise
differential equation in question.

If β < −1, then we relabel the α’s to be α1 = 0 and α2 = β + 1 so that Re(α1) ≥ Re(α2),
hence α1 − α2 = −β − 1. So, if −β − 1 6= 0, 1, 2, . . . , that is β 6= −1,−2,−3, . . . , then
we will again have a second series solution of the form (2.3) and so the same analyticity
properties hold. If −β − 1 = 0, so β = −1, then we are in the same case as before and
will have a non-analyticity at z = 0. If −β − 1 = 1, 2, 3, . . . , so β = −2,−3,−4, . . . then
we may be in either case, again dependent on the precise differential equation.

Part c)

Consider the case where β = −1 and γ 6= 0, 1, 2, 3 . . . . This leads to a double root of P (α)
where α1 = α2 = 0 which will have bearing on the second solution. We start by analysing
the first solution of the form y1(x;α1) =

∑∞
n=0 anz

n. Substituting this into (2.4) we find

0 =

∞∑
n=2

ann(n− 1)zn−2 − (1 + βz−1)

∞∑
n=1

annz
n−1 + γz−1

∞∑
n=0

anz
n

=
∞∑
n=2

ann(n− 1)zn−2 −
∞∑
n=1

annz
n−1 − β

∞∑
n=1

annz
n−2 + γz−1

∞∑
n=0

anz
n−1 (2.8)

= (γa0 − βa1)z−1 +
∞∑
n=0

(
an+2(n+ 1)(n+ 2)− an+1(n+ 1)− βan+2(n+ 2) + γan+1

)
zn .

A power series is identically 0 if and only if all coefficients are 0, therefore we can solve
for an by solving when each coefficient is 0. We first see that, for a free parameter a0 we
have the following recurrence relation

a1 =
−γa0
−β

, and an+1 =
n− γ

(n+ 1)(n− β)
an for n ≥ 1 , (2.9)

where the first few terms are

a2 =
(1− γ)

2(1− β)

−γ
−β

a0 , a3 =
(2− γ)

3(2− β)

(1− γ)

2(1− β)

−γ
−β

a0 , a4 =
(3− γ)

4(3− β)

(2− γ)

3(2− β)

(1− γ)

2(1− β)

−γ
−β

a0 .

Putting this all together we can find the form of an, namely

an =
((n− 1)− γ)((n− 2)− γ) . . . (1− γ)(−γ)

n!((n− 1)− β)((n− 2)− β) . . . (1− β)(−β)
a0 for n ≥ 1 . (2.10)

We can then appeal to Pochammer notation to see that we can write an = (−γ)n
n!(−β)na0. But

then since β = −1 we have (−β)n = (1)n = n!, so we may finally write our first series
solution as

y1(z) =

∞∑
n=0

anz
n where an =

(−γ)n
(n!)2

a0 . (2.11)

To analyse the analyticity we may appeal to a radius of convergence calculation using the
ratio test. Recall that the radius of convergence of y1(z) is those values of z such that

limn→∞

∣∣∣an+1zn+1

anzn

∣∣∣ < 1 to ensure the series converges.
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Thus we can calculate

lim
n→∞

∣∣∣∣∣an+1z
n+1

anzn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣(−γ)n+1a0
((n+ 1)!)2

(n!)2

(−γ)na0
z

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (n− γ)

(n+ 1)2
z

∣∣∣∣ ,
hence we require |z| < lim

n→∞

∣∣∣∣∣(n+ 1)2

(n− γ)

∣∣∣∣∣ =∞ (2.12)

and so the radius of convergence is infinite, hence y1(z) is analytic everywhere.

Due to the aforementioned double root of P (α) for β = −1, we know by the Frobenius
method from lectures that the second linearly independent series must have the form

y2(z) = y1(z) log(z) +

∞∑
n=0

cnz
n , (2.13)

where we have used the fact that zn+α = zn since α = 0. Clearly due to the log term this
solution is not analytic at z = x − β = 0, but it is analytic in a neighbourhood (only for
z > 0 it seems). Note that our condition γ 6= 0, 1, 2, 3, . . . ensures that an 6= 0 for any n,
but this situation is not much of an issue anyway, as we will see in part d).

Part d)

Suppose γ = m for some m = 0, 1, 2, . . . and still β = −1. Then the series solution will
have a finite number of terms because for each n > γ we have an ∝ (γ − n), hence giving
an = 0. If we take γ = 2 then the analytic solution looks like

y1(z) = a0 +
2

β
a0z +

2

2(β − 1)β
a0z

2 + 0z3 + 0z4 + 0z5 . . . .

Using the initial condition y(0) = 1, we thus have

y1(z) = 1− 2z +
1

2
z2 . (2.14)
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Q3. Sturm-Liouville example

Consider the Sturm-Liouville problem

(x+ 1)y′′ − xy′ + λy = 0 , 0 < x < 1 , y(0) = 0 , y(1) = 0 .

We note that this is precisely the problem we have considered in Q2 with β = −1, and
instead of considering the parameter γ we now consider the eigenvalue λ. Again, we make
the transformation z = x− β = x+ 1 so that our problem is now

y′′ +

(
1

z
− 1

)
y′ +

λ

z
y = 0 , 1 < z < 2 , y(1) = 0 , y(2) = 0 . (3.1)

Part a)

To determine information about the eigenvalues λ, we first want to put (3.1) into Sturm-
Liouville form, that is,

d

dz

(
p(z)

dy

dz

)
+
(
q(z) + λr(z)

)
y = 0 (3.2)

for a finite interval a ≤ z ≤ b with p(z) > 0 and r(z) > 0. To do this, we can use an
integrating factor to collapse the first two terms of (3.1) into a derivative of a product,
namely

µ = exp

(∫
(z−1 − 1)dz

)
= exp(log(z)− z) = ze−z . (3.3)

We can then multiply both sides by µ,

ze−zy′′ + ze−z
(

1

z
− 1

)
y′ + ze−z

λ

z
y = 0 ,

which thus simplifies into Sturm-Liouville form,

d

dz

(
ze−z

dy

dz

)
+ λe−zy = 0 . (3.4)

Hence we can identify this with (3.2) by writing

p(z) = ze−z , q(z) = 0 , r(z) = e−z . (3.5)

We then see that on our finite interval [a, b] = [1, 2], none of p(1) , p(2) , r(1) , r(2) vanish
or diverge, hence we conclude that this is a regular Sturm-Liouville (S-L) problem.

As such, the theorem from lectures tells us that all eigenvalues λ of a regular S-L problem
must be real. Furthermore, in rewriting our Dirichlet boundary conditions as

αy(1) + ζy′(1) := 1y(1) + 0y′(1) = 0

and γy(2) + δy′(2) := 1y(2) + 0y′(2) = 0 ,

we see that q(z) = 0, α · ζ = 0 ≤ 0 and γ · δ = 0 ≥ 0, hence the eigenvalues λ are strictly
non-negative. Therefore we have λ ∈ (0,∞) for all eigenvalues.
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Part b)

Let yk(z) and λk denote the eigenfunctions and corresponding eigenvalues associated to
the Sturm-Liouville operator L as above, that is, Ly = λr(z)y(z). Suppose we are given
an arbitrary function f(z) that is “sufficiently nice”, then we can hope to express it in
terms of the eigenfunctions of L, that is, write

f(z) =
∑
n=0

cnyk(z) for some coefficients cn ∈ R . (3.6)

We know by the theorem in lectures that the eigenfunctions of L are orthogonal with
respect to the weight function r(z), that is,

〈ryn, yk〉 = 〈r(z)yn(z), yk(z)〉 =

∫ 2

1
e−zyn(z)yk(z)dz = 0 for n 6= k . (3.7)

By the self-adjointness of L we also have

〈yk, f〉 = 〈yk, Ly〉 = 〈Lyk, y〉 = 〈λkryk, y〉 . (3.8)

Hence, using our expression in (3.6), we can write for some fixed k index

〈yk, f〉 = 〈λkryk, f〉 = λk

〈
ryk,

∞∑
n=0

cnyn

〉
(3.9)

= λk

∞∑
n=0

〈ryk, cnyn〉 = λk

∞∑
n=0

ck〈ryk, yn〉δk,n = λkck〈ryk, yk〉 , (3.10)

where we have used the linearity of the inner product (whilst ignoring the important
technical details about pulling the infinite sum out, see a Functional Analysis textbook
for a more rigorous approach with particular conditions on f(z)), and the orthogonality of
the yk’s (where δk,n denotes the Kronecker delta symbol). Therefore, using the standard
inner product on function spaces,

〈f, g〉 =

∫ b

a
f(x)g(x)dx

we have the following formula for cn in our case,

ck =
〈yk, f〉

λk〈ryk, yk〉
=

∫ 2
1 yk(z)f(z)dz

λk
∫ 2
1 e
−zy2k(z)dz

. (3.11)

Part c)

As mentioned in the preamble, the ODE in (3.1) is precisely the ODE in (2.4) with β = −1
(as we had there) and the eigenvalues λ taking the place of the free parameter γ. However,
now that we have analysed this question in the context of the Sturm-Liouville form, we
see that our conclusion in part a) that λ ∈ (0,∞) now tells us that we must also have
γ ∈ (0,∞) in (2.4) or else we would have trivial solutions for y(z).

Furthermore, in the problem of Q3 we have now specified boundary conditions on the
domain [1, 2] which play an important role. With these boundary conditions, we can now
say that if γ is not one of the eigenvalues calculated for the S-L problem, then no solution
will exist for the boundary value problem. With a bit of work, one would be able to cal-
culate these eigenvalues, but Sturm-Liouville theory at least guarantees what form they
must have. Note the further point that in Q2 we expanded about the point z = 0, which
isn’t actually in the domain [1, 2] in Q3.
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Q4. Irregular Singular Point

We want to find the leading order behaviour of the two solutions to

x6y′′(x) = y(x) as x→ 0+ , (4.1)

where in rearranging to y′′ = 1
x6
y it is clear that x = 0 is an irregular singular point. To

do this we may consider a trial solution of the form

y(x) = eS(x), so y′(x) = S′(x)eS
′(x), so y′′(x) = S′′(x)eS(x) + (S′(x))2eS(x) , (4.2)

for some unknown complex valued function S(x). From here on out we will drop the
cumbersome function notation. Using the relations generated by this trial solution, we
can substitute into (4.1) to find

S′′eS + (S′)2eS − 1

x6
eS =

(
S′′ + (S′)2 − 1

x6

)
eS = 0 ,

hence S′′ + (S′)2 − 1

x6
= 0 (4.3)

since eS will never be 0. We may then appeal to a general fact for irregular singular
points (ISPs) that S′′ � (S′)2 in the neighbourhood of the singularity we are considering,
therefore we may simplify (4.3) to be

(S′)2 ∼ 1

x6
, so S′(x) ∼ ±x−3 , so S(x) ∼ ∓1

2
x−2 as x→ 0+ . (4.4)

Consider the first solution given by S1(x) = −1
2x
−2 + C(x) for some function C(x) such

that

C(x)� −1

2
x−2 , so C ′(x)� x−3 and C ′′(x)� −3x−4 as x→ 0+ . (4.5)

To find the leading order behaviour of (4.1) we seek to understand the asymptotic form
of C(x), so we can start by calculating

S′1 = x−3 + C ′(x) , and S′′1 = −3x−4 + C ′′(x) . (4.6)

We can then plug this into (4.3) to get

0 = S′′1 + (S′1)
2 − x−6

= −3x−4 + C ′′(x) + (x−3 + C ′(x))2 − x−6

= −3x−4 + C ′′(x) + x−6 + 2x−3C ′(x) + C ′(x)2 − x−6

= C ′(x)2 + 2x−3C ′(x)− 3x−4 + C ′′(x) . (4.7)

Using our information in (4.5), which we can append with (C ′)2 � x−3C ′, we may write

C ′(x)2 + 2x−3C ′(x) ∼ 2x−3C ′(x) , and C ′′(x)− 3x−4 ∼ −3x−4 . (4.8)

Hence, plugging this into (4.7) we have

2x−3C ′(x)− 3x−4 = 0 , so C ′(x) =
3

2x
, so C(x) =

3

2
log x+D(x) as x→ 0+ (4.9)

for some function D(x)� log x as x→ 0+ which gives

S1(x) = −1

2
x−2 +

3

2
log x+D(x) . (4.10)
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We can now play the same game with D(x). Since D(x)� log x we have

D′(x)� x−1 and D′′(x)� −x−2 , (4.11)

and then

S′1 = x−3 +
3

2
x−1 +D′(x) and S′′1 = −3x−4 − 3

2
x−2 +D′′(x) . (4.12)

Substituting these into (4.3) we get

0 = S′′1 + (S′1)
2 − x−6

= −3x−4 − 3

2
x−2 +D′′(x) +

(
x−3 +

3

2
x−1 +D′(x)

)2

− x−6

= −3x−4 − 3

2
x−2 +D′′(x) + x−6 + 3x−4 + 2x−3D′(x) +

9

4
x−2 + 3x−1D′(x) +D′(x)2 − x−6

= D′′(x) +
3

4
x−2 + (3x−1 + 2x−3)D′(x) +D′(x)2 . (4.13)

From (4.11) we then have

D′′(x) +
3

4
x−2 ∼ 3

4
x−2 , and 3x−1D′(x) +D′(x)2 ∼ 3x−1D′(x) as x→ 0+ , (4.14)

but then we also know that 3
x + 2

x3
∼ 2

x3
as x→ 0+, hence we may use these simplifications

to write

2

x3
D′(x) +

3

4x2
= 0 , so D(x) ∼ − 3

16
x2 + d (4.15)

for some constant d. But since − 3
16x

2 → 0 as x → 0+ we may simply write D(x) ∼ d as
x→ 0+.

Putting all of this together, we now have the leading order solution for y1(x) as

y1(x) ∼ eS1(x) ∼ e−
1
2
x−2+ 3

2
log x+d = C1x

3
2 e−

1
2x2 (4.16)

for some constant C1.

For the second solution, we may simply appeal to the symmetry of the solution S(x) ∼
∓1

2x
−2. In all of our above calculations when we had some relation like C(x)� kf(x) as

x→ 0+ for some constant k ∈ R and function f(x), we could always neglect the constant
k as it never changed the asymptotic behaviour in such relations, regardless of whether it
was positive or negative. So, if one carries through the exact same calculations as above
flipping the sign of many terms following from differentiation and such, one finds that

y2(x) ∼ eS2(x) ∼ e
1
2
x−2+ 3

2
log x+d = C2x

3
2 e

1
2x2 (4.17)

for some constant C2. Note that, taking limits, we see that y1 → 0 as x → 0+ whereas
y2 →∞ as x→ 0+. Thus we have found the leading order behaviour of both solutions to
the original ODE.
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