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Q1. Fourier and Laplace transforms and

convolutions

Part a)

We first derive an analogue of the derivative property of a Fourier transform for
Fourier-sine and Fourier-cosine transforms. For a function f(x) with all necessary
properties to take Fourier tranforms, i.e. substantial decay at ±∞, integrability,
etc., integration by parts gives us

Fc{f ′(x)} =
1√
2π

∫ ∞
0

f ′(x) cos(kx)dx

=
1√
2π

[
[f(x) cos(kx)]∞0 + k

∫ ∞
0

f(x) sin(kx)dx

]
=
f(0)√

2π
+ kFs{f(x)} , (1.1)

and similarly

Fs{f ′(x)} =
1√
2π

∫ ∞
0

f ′(x) sin(kx)dx

=
1√
2π

[
[f(x) sin(kx)]∞0 − k

∫ ∞
0

f(x) cos(kx)dx

]
= −kFc{f(x)} . (1.2)

Part b)

To establish the properties of f(x) : [0,∞) → R in order to satisfy the given
equations, we calculate using our derived properties in part a),

Fc{f ′′(x)} =
f ′(0)√

2π
+ kFs{f ′(x)} =

f ′(0)√
2π
− k2Fc{f(x)} , (1.3)

and Fs{f ′′(x)} = −kFc{f ′(x)} =
−kf(0)√

2π
− k2Fs{f(x)} . (1.4)

We first notice that in order to get the desired equalities we clearly need f ′(0) =
f(0) = 0. Further to this, we see throughout the process that we are assuming the
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existence of Fourier transforms for f(x), f ′(x) and f ′′(x). Therefore to satisfy the
requirements of Fourier’s Integral Theorem (which are sufficient but not necessary
conditions), we must have that f(x) is piecewise C3 and that each of f(x), f ′(x)
and f ′′(x) are absolutely integrable.

Part c)

Let f(t) = tα and g(t) = tβ for real α, β > −1. We will calculate the Laplace
convolution f ∗ g where

(f ∗ g)(x) =

∫ x

0

f(t)g(x− t)dt =

∫ x

0

tα(x− t)βdt . (1.5)

Using formulas provided on the formula sheet we have

L{(f ∗ g)(x)} = L{f}L{g} =
Γ(α + 1)

pα+1

Γ(β + 1)

pβ+1
=

Γ(α + 1)Γ(β + 1)

p(α+β+1)+1
. (1.6)

Then, using the fact that for a ∈ R\Z− we have L−1{ 1
pa+1} = 1

Γ(a+1)
xa, we can hence

calculate

L−1

{
Γ(α + 1)Γ(β + 1)

p(α+β+1)+1

}
=

Γ(α + 1)Γ(β + 1)

Γ((α + 1) + (β + 1))
xα+β+1 = B(α + 1, β + 1)xα+β+1 .

(1.7)

Part d)

Let T > 0 be a constant and f : [0,∞) be a function that is T -periodic, so

f(t+ T ) = f(t), hence f(t) = f(t− T ) for all t ≥ 0 . (1.8)

We can then define a new function fT (t) = f(t) for 0 ≤ t ≤ T and fT (t) = 0 for
t > T . We can rewrite this definition of fT : [0,∞) using Heaviside step functions
as

fT (t) = [1−H(t− T )]f(t) = f(t)−H(t− T )f(t− T ) . (1.9)

Then we can calculate, using the linearity of Laplace transforms and the formula
sheet again,

L{fT (t)} = L{f(t)−H(t− T )f(t− T )} = L{f(t)} − e−pTL{f(t)} , (1.10)

hence arriving at our desired formula,

L{f(t)} =
L{fT (t)}
1− e−pT

. (1.11)
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Q2. A falling rope

Let c > 0 be a constant and g the acceleration due to gravity. A rope lies at rest
along the x-axis, stretching from 0 to infinity. At time t = 0, the support is removed
and gravity pulls the rope down. During the whole time the left end of the rope is
fixed at (x, h) = (0, 0). We may assume that the displacement h(x, t) of the string
is described by the wave equation

ḧ(x, t) = c2h′′(x, t)− g (with x, t > 0) . (2.1)

Part a)

The initial and boundary conditions of the desired setup can be specified as

h(x, 0) = 0 ,
∂h

∂t
(x, 0) = 0 , (2.2)

h(0, t) = 0 , lim
x→∞

∂h

∂x
(x, t) = 0 . (2.3)

The first two are given by the fact that the rope is still on the x-axis at t = 0. The
second two are given by the fact that the rope is fixed at x = 0, and importantly
that the shape of the rope falling at infinity will still be flat as we expect the shape
at any time to have a concave up decreasing shape.

Part b)

We note that since we are working in a positive time and space domain t, x > 0 and
the initial values behave well at the origin that we are best off using Laplace trans-
forms in the time domain, reducing the problem to a spatial differential equation.
We first define the Laplace transform of h(x, t) with respect to t,

H(x, p) =

∫ ∞
0

h(x, t)e−ptdt . (2.4)

We can then calculate

c2∂
2H

∂x2
= c2 ∂

2

∂x2

∫ ∞
0

h(x, t)e−ptdt

=

∫ ∞
0

c2∂
2h

∂x2
e−ptdt

=

∫ ∞
0

(
∂2h

∂t2
+ g

)
e−ptdt

= p2H(x, p)− ph(x, 0)− ht(x, 0) +
g

p

= p2H(x, p) +
g

p
. (2.5)

In the fourth line we used the fact that L{f ′′(x)} = p2L(p) − pf(0) − f ′(0) and in
the fifth line we were able to impose our initial conditions. This then gives us a
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standard linear second order ordinary differential equation in x,

∂2H

∂x2
− p2

c2
H =

g

c2p
. (2.6)

This then yields the simple solution, where A and B are constants,

H(x, p) = A exp
(p
c
x
)

+B exp
(
−p
c
x
)
− g

p3
. (2.7)

Imposing our two boundary conditions gives us

H(0, p) = A+B − g

p3
= 0 , (2.8)

and lim
x→∞

Hx(x, p) = lim
x→∞

{
Ap

c
exp

(p
c
x
)
− Bp

c
exp

(
−p
c
x
)}

= 0 , (2.9)

so we have A = 0 and B = g/p3. Hence, our solution for H is

H(x, p) = exp

(
−1

c
xp

)
g

p3
− g

p3
. (2.10)

We can then take the inverse Laplace transform of this, in particular noting the
properties L{Θ(t− a)g(t− a)} = exp(−ap)L{g(t)} (where Θ is the Heaviside step

function so as to not confuse notation), and L{ta} = Γ(a+1)
pa+1 , which leads to

h(x, t) = L−1{H(x, p)} =
g

Γ(3)
Θ

(
t− 1

c
x

)(
t− 1

c
x

)2

− g

Γ(3)
t2 . (2.11)

With suitable rearrangement, we can write our final solution as

h(x, t) =

{
g

2c2
x(x− 2ct) if x < ct

−g
2
t2 if x ≥ ct

. (2.12)

Part c)

We can see from our solution in (2.12) that for a fixed t = τ , we have a positive
quadratic from 0 < x < cτ , which agrees with our concave up decreasing shape, and
for x > cτ the rope remains flat parallel to the x-axis. A plot of the situation for
this fixed t = τ is below.

Note the trajectory of the rope from τ − 1 < t < τ + 1, where particles closer
to the origin get closer and closer to the “wall” at x = 0 as time progresses. We see
that the “wave” propagates through the rope as more particles start to wrap back
towards the wall as time progresses.
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Figure 2.1: A plot of the shape of the rope for a fixed t = τ > 0
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Q3. Closer inspection of an integral equation

In the lectures we have analysed the integral equation

f(x) = e−|x| + λ

∫ ∞
−∞

e−|x−y|f(y)dy (3.1)

which, after taking Fourier transforms, we found could be formally expressed as

f(x) =
1

π

∫ ∞
−∞

eikx

k2 − (2λ− 1)
. (3.2)

Part a)

We will analyse the case λ > 1/2, hence inducing singularities on the real axis. We
thus consider the contour integral

I =

∮
eixz

z2 − (2λ− 1)
dz . (3.3)

In the case of x ≥ 0, we perform this integral in the anti-clockwise direction
around the semi circular contour in the upper-half plane (this is important), with
indented clock-wise semi-circles around the poles at z± = ±

√
2λ− 1 on the real

axis. Cauchy’s theorem gives us

I =

(∫ z−−r1

−R
+

∫ z+−r2

z−+r1

+

∫ R

z++r2

)
eixk

k2 − (2λ− 1)
dk + lim

r1→0

∫
Cr1

eixz

z2 − (2λ− 1)
dz

+ lim
r2→0

∫
Cr2

eixz

z2 − (2λ− 1)
dz +

∫
CR

eixz

z2 − (2λ− 1)
dz = 0 . (3.4)

Since we have chosen x ≥ 0, we can apply Jordan’s lemma. On the arc CR, where
z = Reixθ for θ ∈ [0, π], we have∣∣∣∣ dz

z2 − (2λ− 1)

∣∣∣∣ =

∣∣∣∣ Rieixθdθ

R2e2xiθ − (2λ− 1)

∣∣∣∣ ≤ Rdθ

R2 − (2λ− 1)
→ 0 as R→∞ . (3.5)

Thus we deduce from Jordan’s Lemma that

lim
R→∞

∫
CR

eixz
1

z2 − (2λ− 1)
dz = 0 . (3.6)

Then, from Limiting Contours IV we have for the semi-circular contributions (in the
clockwise direction hence picking up a negative)

lim
r1→0

∫
Cr1

eixz

z2 − (2λ− 1)
dz = −iπRes

z=z−
{g(z)} = −iπ eixz−

z− − z+

=
iπ

2

e−ix
√

2λ−1

√
2λ− 1

, (3.7)

and similarly lim
r2→0

∫
Cr2

eixz

z2 − (2λ− 1)
dz = −iπ

2

eix
√

2λ−1

√
2λ− 1

. (3.8)
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Taking the limits R → ∞, r1, r2 → 0 we see the first term in (3.4) is merely the
principal value of the integral we want to take in (3.2). Collecting all of this into
(3.4) we calculate for x ≥ 0

PV
1

π

∫ ∞
−∞

eixk

k2 − (2λ− 1)
dk =

1

π

iπ

2
√

2λ− 1

(
eix
√

2λ−1 − e−ix
√

2λ−1
)

= − 1√
2λ− 1

sin(
√

2λ− 1x) . (3.9)

We can then perform the same procedure with minor tweaks for the case x < 0.
This time we analyse the same integral as in (3.3) by closing contour in the lower
half plane in the clockwise direction. Observing the analogous equation in (3.4) we
see that the direction of the part on the real axis remains the same. The residual
contributions will simply be (with positive [anti-clockwise] orientation this time)

lim
r1→0

∫
Cr1

eixz

z2 − (2λ− 1)
dz = −iπ

2

e−ix
√

2λ−1

√
2λ− 1

and (3.10)

lim
r2→0

∫
Cr2

eixz

z2 − (2λ− 1)
dz =

iπ

2

eix
√

2λ−1

√
2λ− 1

. (3.11)

Then, since our contour is now in the lower half-plane, Jordan’s lemma gives us

lim
R→∞

∫
CR

eixz
1

z2 − (2λ− 1)
dz = lim

R→∞

∫
CR

e−i|x|z
1

z2 − (2λ− 1)
dz = 0 . (3.12)

Hence the only change that has occurred is the change of sign in the residuals,
meaning for x < 0 we now have (where we move the negative into the odd sin to
help determine the final result)

PV
1

π

∫ ∞
−∞

eixk

k2 − (2λ− 1)
dk = − 1√

2λ− 1
sin(−

√
2λ− 1x) . (3.13)

Combining the two results then gives us

PV
1

π

∫ ∞
−∞

eixk

k2 − (2λ− 1)
dk = − 1√

2λ− 1
sin(
√

2λ− 1 |x|) . (3.14)

Part b)

We can then verify that our answer in (3.9) satisfies the integral equation in (3.3).
We first note that in both cases of x, for x− y > 0 our domain will be −∞ < y < x,
where y − x > 0 gives us x < y <∞.
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Case 1: x < 0

λ

∫ ∞
−∞

e−|x−y|
(
− 1√

2λ− 1

)
sin(
√

2λ− 1 |y|)dy

= − λ√
2λ− 1

Im

{∫ x

−∞
ey−xe

√
2λ−1i|y|dy +

∫ ∞
x

ex−ye
√

2λ−1i|y|dy

}
= − λ√

2λ− 1
Im

{
e−x

∫ x

−∞
e(1−

√
2λ−1i)ydy + ex

(∫ 0

x

e(−1−
√

2λ−1i)ydy +

∫ ∞
0

e(−1+
√

2λ−1i)ydy

)}
= − λ√

2λ− 1
Im

{
e−x

(1−
√

2λ− 1i)

[
e(1−

√
2λ−1i)y

]x
−∞
− ex

(1 +
√

2λ− 1i)

[
e−(1+

√
2λ−1i)y

]0

x

+
ex

(−1 +
√

2λ− 1i)

[
e(−1+

√
2λ−1i)y

]∞
0

}

= − λ√
2λ− 1

Im

{
e−
√

2λ−1ix

1−
√

2λ− 1i
− ex

1 +
√

2λ− 1i
+

e−
√

2λ−1ix

1 +
√

2λ− 1i
− ex

−1 +
√

2λ− 1i

}

= − λ√
2λ− 1

Im

{
e−
√

2λ−1ix

(
1

1−
√

2λ− 1i
+

1

1 +
√

2λ− 1i

)

− ex
(

1

1 +
√

2λ− 1i
+

1

−1 +
√

2λ− 1i

)}

= − λ√
2λ− 1

Im

{
2

2λ
e−
√

2λ−1ix +
2
√

2λ− 1i

2λ
ex
}

= −sin(−
√

2λ− 1x)√
2λ− 1

− ex . (3.15)

Throughout the calculation we have used the fact that lim
y→−∞

e(1+
√

2λ−1i)y = 0 due

to the decay in the real part. Since we have x < 0, we note that |x| = −x. Hence
putting this all together into our integral equation we have

e−|x| + λ

∫ ∞
−∞

e−|x−y|f(y)dy = ex − sin(
√

2λ− 1 |x|)√
2λ− 1

− ex = −sin(
√

2λ− 1 |x|)√
2λ− 1

= f(x) ,

(3.16)

thus showing that our calculated f(x) in (3.14) does indeed satisfy the integral equa-
tion (3.3).

Case 2: x ≥ 0
It would be incredibly superfluous to perform such a lengthy calculation again when
there are only minor tweaks, so we will explain the key differences instead. Because
x ≥ 0 now, line 3 of (3.15) instead becomes

− λ√
2λ− 1

Im

{
e−x

(∫ 0

−∞
e(1−

√
2λ−1i)ydy +

∫ x

0

e(1+
√

2λ−1i)ydy

)
+ ex

∫ ∞
x

e(−1+
√

2λ−1i)ydy

}
.

(3.17)
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We see that this time there is a e−x term attached to the expanded integral as
opposed to the ex in the first case - this is the main difference that carries through
in the calculations. Performing the exact same steps as before we arrive at

λ

∫ ∞
−∞

e−|x−y|
(
− 1√

2λ− 1

)
sin(
√

2λ− 1 |y|)dy = −sin(
√

2λ− 1x)√
2λ− 1

− e−x , (3.18)

and then because we now have |x| = x since x is positive, we see that once again
f(x) satisfies the integral equation.

Part c)

Returning to (3.14), we can rewrite z0 =
√

2λ− 1 and take the limit λ → 1
2
+, i.e.

z0 → 0+, as

lim
z0→0+

f(x) = lim
z0→0+

−sin(z0|x|)
z0

= lim
z0→0+

−|x|sin(z0|x|)
z0 |x|

= −|x| , (3.19)

where we used the standard limit sin(k)/k → 1 as k → 0. We can then verify this
satisfies the integral equation, first by assuming that x < 0:

λ

∫ ∞
−∞

e−|x−y|(−|y|)dy = −λ
(∫ x

−∞
ey−x|y|dy +

∫ ∞
x

ex−y|y|dy
)

= −λ
(
−e−x

∫ x

−∞
eyydy − ex

∫ 0

x

e−yydy + ex
∫ ∞

0

e−yydy

)
= −λ

(
−e−x [ey(y − 1)]x−∞ + ex

[
e−y(y + 1)

]0
x
− ex

[
e−y(y + 1)

]∞
0

)
= −1

2
(1− x+ ex − (x+ 1) + ex)

= x− ex = −|x| − e−|x| .

Thus in letting λ = 1/2 we see that this once again satisfies the integral equation.
Again, the x > 0 is identical and will instead produce −x− e−x = −|x| − e−|x|.

Part d)

In the lecture we had, for k < 1/2,

f0(x) =
1√

1− 2λ
e−|x|

√
1−2λ . (3.20)

We can calculate

lim
z0→0−

1

z0

e−z0 |x| = lim
z0→0−

1

z0

− |x|+ z0|x|2

2
− z2

0 |x|3

6
+ · · · = −∞ , (3.21)

hence showing this one-sided limit clearly does not agree with the solution in (3.19)
since this limit does not exist, showing us that we really do need a full description
of λ-dependent behaviour before attempting to calculate “uglier” points. We note
that if we had instead f0(x) = 1√

1−2λ
(e−|x|

√
1−2λ−1) then this limit would agree, but

this would not have yielded a solution to the integral equation.
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Q4. An all order asymptotic expansion

Let n ∈ N. We will evaluate the large-t behaviour of solutions the initial value
problem

ẏ + y =
1

tn
for t ≥ 1 with y(1) = 0 . (4.1)

Part a)

We can use the integrating factor I = e
∫

1dt = et to calculate

ẏ + y =
1

tn
,

=⇒ etẏ + ety = ett−n ,

=⇒ d

dt
(ety) = ett−n ,

=⇒ ety = y(1) +

∫ t

1

x−nexdx ,

which leads to a final implicit solution

y(t) = e−t
∫ t

1

x−nexdx . (4.2)

Part b)

We will find the all order asymptotic expansion of the solution as t → ∞ using
integration by parts on the integral in (4.2) to produce a recurrence relation. Letting
u = x−n and v′ = ex we have∫ t

1

x−nexdx =
[
x−nex

]t
1

+ n

∫ t

1

x−(n+1)exdx

=
(
t−net − e

)
+ n

(
t−(n+1)et − e+ (n+ 1)

∫ t

1

x−(n+2)exdx

)
= t−net

[
1 + n

1

t
+ n(n+ 1)

1

t2
+ . . .

]
− e [1 + n+ n(n+ 1) + . . . ]

= t−net
∞∑
k=0

(n+ k − 1)!

(n− 1)!
t−k + C , (4.3)

where we labelled the extraneous right hand series with C. When we multiply this
integral by the pre-integral term e−t in (4.2) we see that the term Ce−t → 0 as
t → ∞ and importantly it does this much quicker than any t−m for large t values.
Hence we can return to (4.2) and write our all order asymptotic expansion as t→∞

y(t) =
∞∑
k=0

(n+ k − 1)!

(n− 1)!

1

tn+k
(4.4)
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Part c)

We can verify the asymptotic expansion y(t) =
∑
ak in (4.4) is not convergent by

performing the ratio test. We calculate

L = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(n+ (k + 1)− 1)!

(n− 1)! tn+(k+1)

(n− 1)! tn+k

(n+ k − 1)!

∣∣∣∣
= lim

k→∞
(n+ k)

1

t
=∞ , (4.5)

hence showing that the asymptotic diverges since L > 1 for any value of t.
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Q5. Asymptotic expansion of binomial coefficients

Part a)

We will first prove the identity for the two integers 0 ≤ m ≤ n(
n

m

)
=

1

2πi

∮
(1 + z)n

zm+1
dz . (5.1)

The integrand f(z) has one pole of order m+1 at z = 0, hence we consider a contour
on the anti-clockwise unit circle |z| = 1. Then by the residue theorem we have

1

2πi

∮
(1 + z)n

zm+1
dz = Res

z=0
{f(z)}

= lim
z→0

1

m!

dm

dzm

[
zm+1 (1 + z)n

zm+1

]
= lim

z→0

1

m!

dm

dzm

[
n∑
k=0

(
n

k

)
zk

]

= lim
z→0

1

m!

[
n∑

k=m

(
n

k

)
k(k − 1) . . . (k − (m− 1))zk−m

]

= lim
z→0

1

m!

[(
n

m

)
m! + z

n∑
k=m+1

(
n

k

)
k!

(k −m)!
zk−m−1

]

=

(
n

m

)
. (5.2)

Part b)

We now want to analyse the first two leading order terms in the asymptotic expansion
of
(

2n
n

)
as n→∞. Using the identity in (5.1), we can write(

2n

n

)
=

1

2πi

∮
(1 + z)2n

zn+1
dz =

1

2πi

∮
dz

z
exp [n (2 log(1 + z)− log(z))] . (5.3)

To perform our saddle point analysis, we will first define

g(z) =
1

z
and h(z) = 2 log(1 + z)− log(z) . (5.4)

We can then calculate the saddle point of h(z),

h′(z) =
2

1 + z
− 1

z
= 0 , so z0 = 1 . (5.5)

We then note that the integrand is holomorphic in a neighbourhood of this saddle
point (its only singularity is at z = 0), hence allowing us to perform the saddle point
analysis around z0 = 1. Noting that we have

h′′(z) =
1

z2
− 2

(1 + z)2
, so h′′(z0) =

1

2
(5.6)
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we can then expand h(z) about z0 = 1 as follows:

h(z) = h(z0) + h′(z0)(z − z0) +
h′′(z0)

2
(z − z0)2 + . . .

= 2 log(2) +
1

4
(z − 1)2 + . . .

We can then make a change of variables z = 1 + reiθ which leads to

h(z) = 2 log(2) +
1

4
r2e2iθ + . . . (5.7)

The path of steepest descent, Γs, will occur when e2iθ = −1, so θ = π
2
. Hence, the

contour of steepest descent passes through z = 1 in the positive direction parallel
to the imaginary axis, so we let z = 1 + ri with dz = idr. Before expanding more
fully, we first calculate higher term expansions of g(z) and h(z),

g(r) =
1

1 + ri
= 1− ir − r2 + . . . , (5.8)

nh(r) = 2n log(2)− n

4
r2 +

n

4
ir3 +

7n

32
r4 . . . . (5.9)

In our integral calculation we will make the substitution r = 2√
n
u, which tells us

how many terms to expand to above. In the g(r) case we expand to r2 as this will
yield 1/n. In h(r), we expand to the nr4 term as this will yield n/n2 = 1/n. Hence
we can now use Laplace’s method and find our asymptotic expansion as follows:

1

2πi

∮
g(z) exp[nf(z)]dz ∼ 1

2πi
exp[2n log(2)]

∫ ∞
−∞

i drg(r) exp

[
−n

4
r2 +

n

4
ir3 +

7n

32
r4 + . . .

]
∼ 22n

2π

∫ ∞
−∞

dr e−
n
4
r2
[
1− ir − r2 + . . .

]
e

n
4
ir3+ 7n

32
r4

=
22n

2π

∫ ∞
−∞

2√
n
du e−u

2

[
1− 2√

n
iu− 4

n
u2 + . . .

]
e

2√
n
iu3+ 7

2n
u4

∼ 22n

π
√
n

∫ ∞
−∞

du e−u
2

[
1− 2√

n
iu− 4

n
u2 + . . .

] [
1 +

(
2√
n
iu3 +

7

2n
u4

)

+
1

2!

(
2√
n
iu3 +

7

2n
u4

)2

+ . . .

]

∼ 22n

π
√
n

∫ ∞
−∞

du e−u
2

[
1− 2i√

n
u− 4

n
u2 + ..

] [
1 +

2i√
n
u3 +

7

2n
u4 − 2

n
u6 + ..

]
=

22n

π
√
n

∫ ∞
−∞

du e−u
2

[
1− 2i√

n
u− 4

n
u2 +

2i√
n
u3 +

4

n
u4 − 8i

n3/2
u5

+
7

2n
u4 − 14i

n3/2
u5 − 14

n2
u6 − 2

n
u6 +

4i

n3/2
u7 +

8

n2
u8 + ..

]
=

22n

π
√
n

∫ ∞
−∞

du e−u
2

[
1 +

2√
n
iu3 − 2

n
u6 − 2√

n
iu+

4

n
u4 +

4i

n3/2
u7

=
22n

π
√
n

∫ ∞
−∞

du e−u
2

[
1− 4

n
u2 +

15

2n
u4 − 2

n
u6 + . . .

]
=

22n

π
√
n

[√
π −
√
π

8n
+ . . .

]
.
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In the fifth line we only needed the (u3)2 term from the quadratic expansion as this is
the only part that contributes to 1/n, so we omit expanding the rest. In the seventh
line we used the fact that

∫
R r

2k+1e−r
2
dr = 0 for any integer k, hence allowing us to

remove the odd contributions. We also discarded the higher order 1/n2 terms along
the way. Hence we arrive at the final solution,(

2n

n

)
∼ 22n

√
nπ

[
1− 1

8n
+ . . .

]
as n→∞ . (5.10)
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