
Advanced Methods: Transforms Assignment 1

Liam Carroll - 830916

Due date: 1st May 2020

Q1. Parametric resonance

Consider a point-like mass m that can move up and down
along a rod that rotates. The position of the rod is described
by an angle θ = θ(t) that measures the deviation of the rod
from the vertical as depicted in the assignment diagram.
The position of the mass along the rod can be described by
` = `(t) which we regard as being a fixed, and given, function
of time. Assume friction is negligible.

Part a)

The mass m has position x = (x, y) in cartesian coordinates.
Since `(t) is a fixed function, this tells us that ` does not correspond to a degree
of freedom in the system. Hence, we only have the one generalised coordinate
corresponding to the angular degree of freedom, which we can denote as {q1} = {θ}.
Despite the fact that ` is not a generalised coordinate, its time dependence means
that time derivatives of ` still occur in calculations. We consider the xy-plane as
emanating from the suspension point in the standard way (i.e. x > 0 is ”right” and
y > 0 is ”up”). Hence, this gives us

x = ` sin θ , y = −` cos θ . (1.1)

We can then calculate the respective time derivatives,

ẋ = ˙̀ sin θ + `θ̇ cos θ , (1.2)

ẏ = − ˙̀ cos θ + `θ̇ sin θ , (1.3)

where v = ẋ = (ẋ, ẏ) denotes the velocity of the mass m.
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Part b)

We now wish to calculate the Lagrangian L = L(t, {qi(t)}, {q̇i(t)}) = T − V where
we have V being conservative (since gravitational potential does not depend on
generalised velocities). We can calculate the kinetic energy,

T =
1

2
mv2 =

1

2
m(ẋ2 + ẏ2) =

1

2
m
(

( ˙̀ sin θ + `θ̇ cos θ)2 + (− ˙̀ cos θ + `θ̇ sin θ)2
)

=
m

2

(
( ˙̀2 sin2 θ + 2 ˙̀`θ̇ sin θ cos θ + `2θ̇2 cos2 θ)

+ (`2θ̇2 sin2 θ − 2 ˙̀`θ̇ sin θ cos θ + ˙̀2 cos2 θ)
)

=
m

2
( ˙̀2 + `2θ̇2) . (1.4)

Similarly, we can calculate the potential energy,

V = mgy = −mg` cos θ . (1.5)

Thus we can then calculate the Lagrangian of the system,

L = T − V = m

(
1

2
˙̀2 +

1

2
`2θ̇2 + g` cos θ

)
. (1.6)

Part c)

We now wish to simplify the equations of motion for the system using the Euler-
Lagrange equations, namely

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
, (1.7)

where we only have one equation due to having one generalised coordinate q1 = θ.
Thus we can calculate

∂L

∂θ̇
= m`2θ̇ , so

d

dt

(
∂L

∂θ̇

)
= 2m ˙̀`θ̇ +m`2θ̈ , (1.8)

and

∂L

∂θ
= −mg` sin θ . (1.9)

Hence, combining (1.8) and (1.9) into (1.7), we get

2m ˙̀`θ̇ +m`2θ̈ = −mg` sin θ ,

and so with appropriate cancellation and rearrangement, we arrive at the governing
equation of motion for the system

`θ̈ + 2 ˙̀θ̇ + g sin θ = 0 . (1.10)

A numerical solution to this second-order ODE (with necessary initial conditions)
could be found quite easily with standard ODE computation - we will leave this for
another time. We also notice that in the case `(t) being constant, i.e. ˙̀ = 0, this
equation produces the standard model for a simple pendulum.
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Part d)

Given that the system is a (relatively) simple pendulum, one may expect there to
be a conserved charge. In particular, it ”feels” like it may be a closed system, and
since the Lagrangian does not appear to explicitly depend on time, one would like
to think that there is a conserved charge that arises from time invariance.

However, after attempting to show that dH/dt = 0, it became apparent why this
was not true. The fact that ` = `(t) is a fixed function that depends on time means
that the Lagrangian is indeed time dependent - i.e. there is no time symmetry that
arises from this. Namely, in calculating dH/dt we find that

dH

dt
=

d

dt

(
∂L

∂θ̇
θ̇ − L

)
= m ˙̀`θ̇2 +m`2θ̇θ̈ −m῭˙̀− g ˙̀ cos θ + g`θ̇ sin θ , (1.11)

and then using the equations of motion from (1.10), this becomes

dH

dt
= ˙̀

(
−m`θ̇2 −m῭− g cos θ

)
, (1.12)

which is clearly non-zero! However, we again note that in the case of a simple pen-
dulum with ˙̀ = 0, this returns dH/dt = 0 which means energy is conserved in the
simple pendulum system - this gives us a big hint that the pesky `(t) is what is
causing our lack of symmetry.

Clearly, since there are no cyclic coordinates, momentum is not conserved either. It
remains to do a sanity check on the angular momentum. After a simple calculation,
we see that

d

dt
J =

d

dt
(mxẏ −mẋy) =

d

dt
(m`2θ̇k) = (2m ˙̀`θ̇ +m`2θ̈)k , (1.13)

but by (1.10), this is

d

dt
J = −mg` sin θk 6= 0 , (1.14)

and so once again we see that angular momentum is not conserved.

Putting all of this together, we conclude that there are no conserved charges for
this system, and this is largely down to the fact that `(t) causes these lacks of
symmetry. Emmy Noether is sad at this result.
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Q2. Probabilistic application of Maximum Entropy

Principle

Let X be a random variable with probability density ρ : [a, b]→ [0,∞) where

P (X ≤ x) =

∫ x

a

ρ(x′)dx′ , with

∫ b

a

ρ(x)dx = 1 . (2.1)

Part a)

We want find the distribution ρ that maximises the entropy given these constraints.
The entropy of ρ in our case is defined as

S[ρ(x)] = −
∫ b

a

ρ(x) log ρ(x) dx . (2.2)

We clearly wish to maximise the value of the functional S[ρ(x)] subject to the nor-
malisation integral constraint in (2.1). We do this by freely optimising the extended
functional

F [λ, ρ(x)] =

∫ b

a

[−ρ(x) log ρ(x)− λρ(x)] dx+ λ , (2.3)

where the Lagrange multiplier λ is a parameter and not a function. Let
f(x, ρ(x)) = −ρ(x) log ρ(x) and g(x, ρ(x)) = ρ(x). Then, from the lecture notes, we
can use the modified Euler-Lagrange equations for k integral constraints, namely

d

dx

(
∂f

∂ρ′

)
− ∂f

∂ρ
= λ

k∑
i=1

[
d

dx

(
∂gi
∂ρ′

)
− ∂gi
∂ρ

]
. (2.4)

Performing these trivial calculations, particularly due to the lack of ρ′ dependence,
we arrive at the Euler-Lagrange equations for the system,

log ρ(x) + 1 + λ = 0 . (2.5)

Solving for ρ(x) we see that ρ(x) = e−1−λ, but since λ is a constant parameter, this
implies that ρ(x) is constant. Since the support on ρ(x) is the compact interval
[a, b], we can write

ρ(x) = C1(a ≤ x ≤ b) ,

for a normalising constant C. With great ease we see that

1 = C

∫ ∞
−∞

1(a ≤ x ≤ b)dx = C

∫ b

a

dx = C(a− b) so C =
1

a− b
.

Thus, the distribution ρ that maximises the entropy is the uniform distribution on
[a, b],

ρ(x) =
1

b− a
1(a ≤ x ≤ b) . (2.6)
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Part b)

Consider the same scenario as above, but this time with the additional integral
constraint of fixing the mean to have a value µ ∈ (a, b), that is,∫ b

a

xρ(x)dx = µ . (2.7)

Again, we wish to maximise the entropy S[ρ(x)] as in (2.2). This time we wish to
optimise the functional

F [λ, ρ(x)] =

∫ b

a

[−ρ(x) log ρ(x)− λ1ρ(x)− λ2xρ(x)] dx+ λ1 + λ2µ , (2.8)

using (2.4) once again for Lagrange multiplier parameters λ1, λ2. Performing sim-
ilar calculations, this time with the additional function of g2(x, ρ(x)) = xρ(x) and
substituting into (2.4), we arrive at

log ρ(x) + 1 + λ1 + λ2x = 0 . (2.9)

Rearranging for ρ(x), we get

ρ(x) = e−1−λ1−λ2x = Ae−λx , (2.10)

for constants A and λ. Applying the normalisation constraint gives us∫ b

a

ρ(x)dx = A

∫ b

a

e−λxdx =
A

λ

(
e−λa − e−λb

)
= 1 , (2.11)

and then the fixed mean constraint gives us (using integration by parts),

µ =

∫ b

a

xρ(x)dx = A

∫ b

a

xe−λxdx = A

[
−1

λ

(
x+

1

λ

)
e−λx

]b
a

= A

[
1

λ

(
a+

1

λ

)
e−λa − 1

λ

(
b+

1

λ

)
e−λb

]
=
A

λ

[(
ae−λa − be−λb

)
+

1

λ

(
e−λa − eλb

)]
.

If we then use (2.11), we arrive at

µ =
ae−λa − be−λb

e−λa − e−λb
+

1

λ
. (2.12)

Clearly, this is not a closed form solution for the constant λ in terms of µ - far from
it. Indeed, there is no closed form solution for this equation, which when plotted
resembles logistic-curve behaviour. However, we can at least verify that there is a
solution to (2.12) for µ ∈ (a, b).
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Consider the function f : (−∞,∞)→ R given by

f(x) =
ae−xa − be−xb

e−xa − e−xb
+

1

x
=
a− be−(b−a)x

1− e−(b−a)x
+

1

x
. (2.13)

With elementary calculations and L’Hôpital’s rule, we see that

lim
x→−∞

f(x)
[∞∞ ]
=
H

b(b− a)e−(b−a)x

(b− a)e−(b−a)x
= b , (2.14)

and similarly

lim
x→∞

f(x) = a . (2.15)

My original intention was also to show that f(x) is monotonically decreasing, which
it is, however that derivation is not really worth the pain of showing so we omit
it. Thus, with all of these properties combined, we see that f is a bijection from
(−∞,∞)→ (a, b) - in other words, we are guaranteed to have a unique solution for
λ in (2.12), even if we must compute it numerically.

Putting all of this together, we see that the distribution ρ on a fixed closed interval
[a, b] that maximises the entropy given a fixed mean µ is

ρ(x) =
λe−λx

e−λa − e−λb
1(a ≤ x ≤ b) , (2.16)

where λ is the unique solution to (2.12). We see that this is merely an exponential
distribution with rate λ that is appropriately normalised to its truncated interval.

N.B. - It is interesting to note that limλ→0 ρ(x) = 0, which may seem like a trivial
point, however turns out to have an important implication. Due to the symmetry of
f(x), it is possible to show that limx→0f(x) = (a + b)/2. This tells us that in the
case of µ = (a+ b)/2, the distribution that maximises entropy does not exist (since
ρ(x) = 0 cannot be a probability distribution).
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Q3. Geodesics on a cone

The surface of an infinite cone in R3 is specified by the two equations

x2 + y2 = r2

z = r cotα (3.1)

where z ≥ 0 .

Part a)

Cylindrical coordinates (i.e. polar coordinates in
the xy-plane) are the natural system to view the problem, so we let x = (x, y, z) =
(r cos θ, r sin θ, z). We wish to express the infinitesimal line element ds2 = dx2+dy2+
dz2 in terms of these new orthogonal coordinates. We know from vector calculus
that for a new orthogonal coordinate system (q1, q2, q3) we can write

ds2 = h21(dq1)
2 + h22(dq2)

2 + h33(dq3)
2 , where hi =

∥∥∥∥∂x∂qi
∥∥∥∥ . (3.2)

In letting (q1, q2, q3) = (r, θ, z) and performing these simple calculations, we get the
new infinitesimal line element on the cone

ds2 = dr2 + r2dθ2 + dz2 ,

however using the parameterisation of z in (3.1), we have that dz = cotα dr and so
substituting this in, and using the fact that 1 + cot2 α = csc2 α we have the correct
form of our infinitesimal line element,

ds2 = csc2(α)dr2 + r2dθ2 . (3.3)

Part b)

We can now use the parametrisation r = r(θ) for θ ∈ [θ0, θ1]. To find the geodesics
on a cone, we wish to minimise the arc length functional on the curve r = r(θ),
namely

S[r(θ), r′(θ)] =

∫
ds =

∫ √
csc2(α)dr2 + r2dθ2 =

∫ θ1

θ0

√
csc2(α)r′(θ)2 + r2︸ ︷︷ ︸

f(r(θ),r′(θ))

dθ .

(3.4)

Part c)

Since f(r(θ), r′(θ)) does not explicitly depend on θ, i.e. θ is an ignorable coordinate,
we can use the Beltrami equation,

f − r′ ∂f
∂r′

= C , (3.5)
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where C is a constant, to simplify our calculations. We can then calculate

∂f

∂r′
=

∂

∂r′
(csc2(α)r′(θ)2 + r2)

(
1

2
√

csc2(α)r′(θ)2 + r2

)
=

csc2(α)r′(θ)√
csc2(α)r′(θ)2 + r2

,

and so plugging this into (3.5), we see that

√
csc2(α)r′(θ)2 + r2 − csc2(α)r′(θ)2√

csc2(α)r′(θ)2 + r2
=

r2√
csc2(α)r′(θ)2 + r2

= C . (3.6)

Rearranging for r′(θ) we arrive at the differential equation governing the form of
geodesics on the cone,

dr

dθ
= r′(θ) =

r

cscα

√( r
C

)2
− 1 . (3.7)

Part d)

In order to now solve this differential equation, we first integrate and then use the
constraint that r(θ) must pass through (r0,±∆θ) in order to solve for the constants.
By integrating both sides of (3.7) we get∫

sin(α)dθ =

∫
1

r
√(

r
C

)2 − 1
dr ,

and by using the identity provided to us in the question, we see that

sin(α)θ + A = arcsec(r/C) ,

for arbitrary constants A and C, which leads us to the general form of a geodesic
on a cone (assuming principal values - more on this later):

r(θ) = C sec(sin(α)θ + A) . (3.8)

Plugging in our constraints we get the simultaneous equations

r0 = C sec(A+ sin(α)∆θ) , and r0 = C sec(A− sin(α)∆θ) . (3.9)

Letting these equal one another, with appropriate rearrangement and use of trigono-
metric identities to simplify cos(w − z) = cos(w + z), this yields

sin(A) sin(sin(α)∆θ) = 0 , (3.10)

and since this must be true for all values of ∆θ, and assuming that α 6= 0 (which is
violated in part f), this gives us that A = nπ for n ∈ Z. We can then solve for C in
(3.9):

C = r0 cos(nπ + sin(α)∆θ) = (−1)nr0 cos(sin(α)∆θ) , (3.11)
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and so substituting these into (3.8), we calculate

r(θ) = (−1)nr0 cos(sin(α)∆θ) sec(sin(α)θ + nπ)

= (−1)nr0 cos(sin(α)∆θ)(−1)n sec(sin(α)θ) .

Thus, we arrive at the curve of the geodesic connecting the two points (r0,±∆θ),

r(θ) = (r0 cos(sin(α)∆θ)) sec(sin(α)θ) . (3.12)

As a brief example, consider setting α = π
6
, ∆θ = π

2
, and r0 =

√
2 which would lead

to r(θ) = sec(θ/2). We could then use a 3D parametric plot on

(x(t), y(t), z(t)) = sec(t/2)
(

cos(t), sin(t),
√

3
)

for t ∈ [−π/2, π/2]

to get an idea of what we have calculated.

Part e)

Throughout the previous question when manipulating trigonemetric functions, in
particular when using their inverses to arrive at (3.8), we assumed the use of prin-
cipal values of angles. Clearly, though, we could have found more general solutions
throughout. Similarly to the cylindrical example in the notes, this leads us to believe
that the geodesics are not unique.

Viewed in a different light, it can be shown that a cone is isometric to the plane
- in fact, even a child can see this by cutting out a circular sector from paper and
wrapping it around to form a cone. Due to this isometry, we can consider multiple
copies of the cone on the plane, corresponding to multiple circular sectors pasted
together at their radial edges. With a little bit of work, one could determine some
specifics around ”how many” copies are possible, i.e. how many distinct sectors
could fit in the one circle before the circle is complete and the same point on the
xy-plane is repeated. We leave this as an exercise for the reader.

In conclusion, these geodesics are not unique, however, there is only a finite amount
of them (unlike the scenario for the cylinder) since we can only ”roll the cone on to
the plane” a finite number of times before repetition of coordinates.

Part f)

We see that for our particular solution in (3.12) we have

lim
α→0

r(θ) = r0 and lim
α→π/2

r(θ) = r0 cos(∆θ) sec(θ) . (3.13)

The first limit makes sense as the curve is simply a constant between two points of
the same radius - indeed, the cone at α = 0 is just the z-axis, so any two points of
the same radius must be the same point. For the second limit, we see that

(x, y, z) = (r0 cos(∆θ), r0 cos(∆θ) tan(θ), 0) , (3.14)

so the curve joining the two points is simply a straight line in the xy-plane that goes
from (x(∆θ),−y(∆θ))→ (x(∆θ), y(∆θ)) as θ varies from [−∆θ,∆θ], i.e. a constant
in x since the two coordinates (r0,±∆θ) will always induce the same x-coords. We
obviously expect this since the cone at α = π/2 is just the xy-plane.
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Q4. Improper logarithmic integral with complex

analysis

Let n ≥ 2 be an integer, r < 1 and R > 1. We
want to determine the value of the integral

Ln =

∫ ∞
0

log x

1 + xn
dx . (4.1)

To do this, we will consider the integral of

Jn =

∮
D

(log z)2

1 + zn
(4.2)

along the contour D = C1 + C2 + C3 + C4 as
given in the diagram to the right. For z = reiθ,
we take the complex logarithm log z = log r+ iθ
to be defined on the domain U = {(r, θ) : r > 0 , θ ∈ [0, 2π)}. This means that we
have a branch cut on the positive real axis.

First we will find the singularities of

f(z) =
(log z)2

1 + zn
. (4.3)

Since log z is well defined on U , we don’t need to worry about any singularity
contributions from the numerator, meaning the only singularities will come from
finding the roots of (negative) unity in the denominator:

1 + zn = 0 , so zn = rneinθ = e(2k+1)πi , so zk = e
(2k+1)

n
πi (4.4)

are the simple poles of f(z) for k = 0, . . . , (n− 1). Notice that these occur in com-
plex conjugate pairs, and in the case of n being odd, z = −1 is also included and is
the only singularity that can occur on the real axis.

We can then calculate the residues of these simple poles using the fact that since we
can express f(z) = P (z)/Q(z) for holomorphic P (z) = (log z)2 and the polynomial
Q(z) = 1 + zn, and all poles are simple, then Res(f ; zk) = P (zk)/Q

′(zk). Hence,

Res(f, zk) =
P (zk)

Q′(zk)
,=

(log e
(2k+1)

n
πi)2

n(e
(2k+1)

n
πi)n−1

=
π2(2k + 1)2

n3
e

(2k+1)
n

πi . (4.5)

We can then calculate the sum of these residues. Note that by hand one would use
standard formulas for the likes of

∑
k2rk to do this, but the step of evaluating these

(i.e. from line 2 to 3 in the following calculation) was assisted by WolframAlpha for
ease. All other steps merely involve factorising factors of eπi/n and noting standard
definitions of trigonemtric functions from complex exponentials.
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Enough talk - we have:

n−1∑
k=0

Res(f, zk) =
π2

n3

n−1∑
k=0

(2k + 1)2e
(2k+1)

n
πi

=
π2

n3

[
4
n−1∑
k=0

k2e
(2k+1)

n
πi + 4

n−1∑
k=0

ke
(2k+1)

n
πi +

n−1∑
k=0

e
(2k+1)

n
πi

]

=
4π2

n3

[
neπi/n

(
(n− 2)e2πi/n − n

)
(e2πi/n − 1)

2 +
neπi/n

(e2πi/n − 1)
+ 0

]

=
4π2

n3

(
neπi/n

e2πi/n − 1

)(
(n− 2)e2πi/n − n

e2πi/n − 1
+ 1

)
=

4π2

n2

csc(π/n)

2i

(
(n− 2)eπi/n − ne−πi/n + eπi/n − e−πi/n

eπi/n − e−πi/n

)
=

2π2

n2
csc(π/n)(−i)

(
n
(
eπi/n − e−πi/n

)
eπi/n − e−πi/n

− eπi/n + e−πi/n

eπi/n − e−πi/n

)

=
2π2

n2
csc(π/n) [cot(π/n)− ni] . (4.6)

Thus, by the residue theorem,∮
D

f(z)dz = 2πi
n−1∑
k=0

Res(f, zk) =
4π3i

n2
csc(π/n) [cot(π/n)− ni] . (4.7)

It remains to analyse the individual contributions Cj.

C1 and C3

Let C1 be parametrised as z = x for r ≤ x ≤ R, and C3 as z = xe2πi for R ≤ x ≤ r,
i.e. the reverse direction and on the other side of the branch cut. Then,(∫

C1

+

∫
C3

)
f(z)dz =

∫ R

r

(log x)2

1 + xn
dx +

∫ r

R

(log x+ 2πi)2

1 + (xe2πi)n
dx

=

∫ R

r

(log x)2

1 + xn
dx −

∫ R

r

(log x)2

1 + xn
dx −

∫ R

r

4πi log x

1 + xn
dx +

∫ R

r

4π2

1 + xn
dx ,

and then taking limits as r → 0 and R→∞, and using the identity provided in the
question, we arrive at(∫

C1

+

∫
C3

)
f(z)dz = −4πiLn +

4π3

n
csc
(π
n

)
. (4.8)

C2 (outer radius)
We aim to show that this contribution goes to 0 as R→ ∞. Let C2 be parametrised
as z = Reiθ, dz = Rieiθdθ for 0 ≤ θ < 2π. Then∫

C2

f(z)dz =

∫ 2π

0

(logR)2 + 2iθ logR + (iθ)2

1 +Rneinθ
Rieiθdθ . (4.9)
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We can then bound the integrand:

|f(z)| =
∣∣∣∣R(logR)2 + 2iθR logR−Rθ2

1 +Rneinθ
ieiθ
∣∣∣∣

=

∣∣∣∣R(logR)2 + 2iθR logR−Rθ2

1 +Rneinθ

∣∣∣∣
≤
∣∣∣∣R(logR)2 + 2iθR logR

1 +Rneinθ

∣∣∣∣ since R, θ2 > 0,

≤
∣∣∣∣ R(logR)2

1 +Rneinθ

∣∣∣∣+

∣∣∣∣ 2θR logR

1 +Rneinθ

∣∣∣∣ by the triangle inequality,

≤
∣∣∣∣R(logR)2

Rn − 1

∣∣∣∣+ 4π

∣∣∣∣R logR

Rn − 1

∣∣∣∣ by the reverse triangle inequality. (4.10)

Then, by an easy application of L’Hopital’s rule (and noting that n ≥ 2) that we
omit for brevity, we can show that both of these terms → 0 as R → ∞. Thus by
the ML-bound we can conclude that

lim
R→∞

∣∣∣∣∫
C2

f(z)dz

∣∣∣∣ ≤ lim
R→∞

2π |f(z)| = 0 (4.11)

as desired.

C4 (inner radius)
Again, we will show this contribution goes to 0 in the limit. Let C4 be parametrised
as z = reiθ for 2π < θ ≤ 0. Then

∫
C4
f(z)dz expands in exactly the same way as

in (4.9) where the terminals are merely reversed and we replace R with r. Then we
can arrive at an identical bound for |f(z)| along this arc as in (4.10). Then using
the standard limit

lim
r→0

r log r = 0 , (4.12)

we can use L’Hopitals rule on the first term again and (4.12) on the second term,
we see that once again we have

lim
r→∞

∣∣∣∣∫
C4

f(z)dz

∣∣∣∣ ≤ lim
r→∞

2π |f(z)| = 0 . (4.13)

Conclusion
Putting all of this together, in particular combining the residues from (4.7) and the
contributions from (4.8), we have∮

D

f(z)dz = −4πiLn +
4π3

n
csc
(π
n

)
=

4π3i

n2
csc(π/n) [cot(π/n)− ni] , (4.14)

and so after dividing by −4πi and taking the real parts of both sides, we finally
arrive at the glorious solution,

Ln = −π
2

n2
csc(π/n) cot(π/n) . (4.15)

We note that next time it would be much easier to take a contour that only contained
one simple pole - that damn residue calculation was a pain.
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Q5. A trigonemetric improper integral

We want to compute

I =

∫ ∞
−∞

sinx

x(1 + x2)
dx , (5.1)

and will do so by evaluating∮
C

eiz

z(1 + z2)
dz (5.2)

around the contour to the right. (Apologies for
the diagram looking like it was drawn in crayon).
With suitable parametrisations, we have∮
C

eiz

z(1 + z2)
dz =

(∫ R

r

+

∫ −r
−R

)
eix

x(1 + x2)
dx+

∫
CR

eiz

z(1 + z2)
dz +

∫
Cr

eiz

z(1 + z2)
dz ,

(5.3)

where we note that for the first two contributions we have, as R→∞ and r → 0,

P.V. Im

(∫ R

r

+

∫ −r
−R

)
eix

x(1 + x2)
dx = I . (5.4)

For the contribution CR, consider g(z) = 1
z(1+z2)

. On the arc CR = {z : |z| = R},
we have by the reverse triangle inequality for R > 1

|g(z)| ≤ 1

R(R2 − 1)
= MR , (5.5)

which means that g(z) tends uniformly to 0 on the arc CR as R → ∞ since MR

does not depend on θ, causing the uniformity. Hence, by Jordan’s Lemma for the
1st and 2nd quadrants, we have

lim
R→∞

∫
CR

eizg(z)dz = 0 , (5.6)

so the CR contribution in (5.3) goes to 0 in the limit.

Next consider the Cr contribution, the indented contour around z = 0. By the
”Limiting Contours IV” theorem in lectures, since z = 0 is a simple pole and the
circular contour is centred around z = 0 by an arc of angle α = π, we have

lim
r→0

∫
Cr

eiz

z(1 + z2)
dz = −iπRes(f ; 0) = −iπ lim

z→0

zeiz

z(1 + z2)
= −iπ , (5.7)

where the negative arises due to the clockwise direction.

Finally we calculate the residue at the simple pole z = i inside the contour,

Res(f ; i) = lim
z→i

(z − i)eiz

z(1 + z2)
= −e

−1

2
. (5.8)
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Putting all of this together in taking r → 0 and R→∞, we have∮
C

eiz

z(1 + z2)
dz =

(∫ ∞
0

+

∫ 0

−∞

)
eix

x(1 + x2)
dx+ iπ = −πie−1 , (5.9)

and so taking imaginary parts and principal values we arrive at

P.V.

∫ ∞
−∞

sinx

x(1 + x2)
dx = (1− e−1)π . (5.10)
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